2023年江苏省苏州市工业园区三校联考中考数学零模试卷(含答案解析)
《2023年江苏省苏州市工业园区三校联考中考数学零模试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2023年江苏省苏州市工业园区三校联考中考数学零模试卷(含答案解析)(24页珍藏版)》请在七七文库上搜索。
1、2023年江苏省苏州市工业园区三校联考中考数学零模试卷一、选择题(本大题共8小题,共24分。)1. 化简(3)2的结果是()A. -3B. 3C. 3D. 92. 有一组数据:2,5,5,6,7,这组数据的平均数为()A. 3B. 4C. 5D. 63. 苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. 0.26108B. 2.6108C. 26106D. 2.61074. 如图是由5个相同的正方体搭成的立体图形,则它的主视图为()A. B. C. D. 5. 上学期某班的学生都是双人桌,其中14男生与女生同桌,这些女生
2、占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多设上学期该班有男生x人,女生y人,根据题意可得方程组为()A. x+4=yx4=y5B. x+4=yx5=y4C. x-4=yx4=y5D. x-4=yx5=y46. 如图,飞镖游戏板中每一块小正方形除颜色外都相同若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A. 12B. 13C. 49D. 597. 如图,在矩形AOBC中,点A的坐标(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A. (74,72)、(-12,4)B. (32,3)、(-23,4)C. (32,3)、(-12,4
3、)D. (74,72)、(-23,4)8. 如图,在菱形ABCD中,A=60,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F,当点M的位置变化时,DF长的最大值为()A. 3B. 6-23C. 23D. 6-33二、填空题(本大题共8小题,共24.0分)9. 分解因式:a3-2a2b+ab2=_10. 如图,已知AB是O的直径,AC是O的切线,连接OC交O于点D,连接BD.若C=40,则B的度数是_.11. 2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的极差是_cm12. 若扇形
4、的圆心角为120,半径为32,则它的弧长为_13. 定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为_14. 若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是15. 如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tanABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=1x,则图象经过点D的反比例函数的解析式是_16. 如图是某
5、风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD=13m,垂直于地面的木棒EF与影子FG的比为2:3,则风车叶片转动时,叶片外端离地面的最大高度等于 米. 三、解答题(本大题共11小题,共82.0分。解答应写出文字说明,证明过程或演算步骤)17. (本小题5.0分)计算:|-2|+tan45-(2-1)018. (本小题5.0分)解不等式组:3xx+2x+42(2x-1)19. (本小题6.0分)先化简,再求值:(x+3)(x-3)+(x-4)2,其中x2-4x
6、+1=020. (本小题6.0分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率21. (本小题6.0分)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,ACBD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流 小惠:证明:ACBD,OB=OD,AC垂直平分BDAB=AD,CB=CD,四边形ABCD是菱形小洁:这个题目还缺少条件,需要补充一个条件才能证明你赞同谁的证法?若赞
7、成小洁的说法,请你补充一个条件,并证明22. (本小题8.0分)第24届冬奥会于2022年2月20日在北京胜利闭幕某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70x75,B:75x80,C:80x85,D:85x90,E:90x95,F:95x100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88请根据以上信息,完成下列问题:(1)n=_,a=_;(2)八
8、年级测试成绩的中位数是_;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由23. (本小题8.0分)如图,一次函数y=kx+b的图象与x轴正半轴相交于点C,与反比例函数y=-2x的图象在第二象限相交于点A(-1,m),过点A作ADx轴,垂足为D,AD=CD(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值24. (本小题8.0分)如图,在ABC中,AB=AC,AOBC于点O,OEAB于点E,以点O为圆心,OE的长为半径作半圆,交AO于点F(1)求证:AC是O的切线;(2)若点F是AO的中
9、点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,求出BP的长25. (本小题10.0分)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种
10、水果多少箱,才能使每天所获利润最大?最大利润是多少?26. (本小题10.0分)已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点(1)直接写出抛物线的函数解析式;(2)如图1,M是抛物线顶点,点P在抛物线上,若直线AP经过CBM外接圆的圆心,求点P的横坐标;(3)如图2,点N是第一象限内抛物线上的一动点,连接NA分别交BC、y轴于D、E两点,若NBD、CDE的面积分别为S1、S2,求S1-S2的最大值;(4)点Q是抛物线对称轴上一动点,当OQA的值最大时,请直接求出点Q的坐标27. (本小题10.0分)综合与实践问题情境:在RtABC中,BAC=90,AB=6,AC=8
11、.直角三角板EDF中EDF=90,将三角板的直角顶点D放在RtABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N猜想证明:(1)如图,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图,在三角板旋转过程中,当B=MDB时,求线段CN的长;(3)如图,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长答案和解析1.【答案】B【解析】【分析】本题考查了二次根式的乘法,解答本题的关键是掌握二次根式的乘法法则:ab=ab按照二次根式的乘法法则求解【解答】解:(3)2=33=9=3故选B2.【答案
12、】C【解析】【分析】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起来,再除以数据个数5把给出的这5个数据加起来,再除以数据个数5,就是此组数据的平均数【解答】解:(2+5+5+6+7)5=255=5,则这组数据的平均数是5故选:C3.【答案】D【解析】解:将26000000用科学记数法表示为:2.6107故选:D科学记数法的表示形式为a10n的形式,其中1|a|10时,n是正数;当原数的绝对值1时,n是负数此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4.【答案】A【解析】【分析】本题考查简
13、单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提根据主视图的意义,从正面看该组合体所得到的图形进行判断即可【解答】解:从正面看该组合体,所看到的图形与选项A中的图形相同,故选:A5.【答案】A【解析】解:由题意可得,x+4=y14x=15y,故选:A根据14男生与女生同桌,这些女生占全班女生的15,可以得到14x=15y,根据本学期该班新转入4个男生后,男女生刚好一样多,可得x+4=y,从而可以列出相应的方程组,本题得以解决本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组6.【答案】C【解析】【分析】本题考查几何概率的求法:首先根据题意将代数
14、关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值【解答】解:总面积为33=9,其中阴影部分面积为41212=4,飞镖落在阴影部分的概率是49,故选C7.【答案】C【解析】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、点A坐标(-2,1),点C纵坐标为4,AF=1,FO=2,AE=3,EAC+OAF=90,OAF+AOF=90,EAC=AOF,E=AFO=90,AECOFA,ECAF=AEOF,EC=32,点C坐标(-
15、12,4),AOFBCN,AECBMO,CN=2,BN=1,BM=MN-BN=3,BM=AE=3,OM=EC=32,点B坐标(32,3),故选C如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据AOFCAE,AOFBCN,ACEBOM解决问题本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型8.【答案】D【解析】解:连接AM交EF于点O,过点O作OKAD于点K,交BC于点T,过点A作AGCB交CB的延长线于点G,取AF的中点R,连接OR,如图: AD/CG,OKAD,OKCG,G=AKT=GTK=90,四边形AGTK是
16、矩形,AG=TK=ABsin60=33,折叠该菱形,使点A落在边BC上的点M处,OA=OM,AOK=MOT,AKO=MTO=90,AOKMOT(AAS),OK=OT=332,OKAD,OROK=332,AOF=90,AR=RF,AF=2OR33,AF的最小值为33,DF的最大值为6-33,故选:D连接AM交EF于点O,过点O作OKAD于点K,交BC于点T,过点A作AGCB交CB的延长线于点G,取AF的中点R,连接OR.证明OK=332,求出AF的最小值,可得结论本题考查菱形中的翻折问题,涉及矩形的判定和性质,垂线段最短等知识,解题的关键是学会添加辅助线,构造直角三角形斜边上的中线解决问题,属于
17、中考填空题中的压轴题9.【答案】a(a-b)2【解析】解:a3-2a2b+ab2,=a(a2-2ab+b2),=a(a-b)2先提取公因式a,再对余下的多项式利用完全平方公式继续分解本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底10.【答案】25【解析】解:AC是O的切线,OAAC,OAC=90,AOC=90-C=90-40=50,OBD=12AOC=25,即ABD的度数为25,故答案为:25先根据切线的性质得OAC=90,再利用互余计算出AOC=90-C=50,由圆周角定理得出OBD=12AOC=25,即可得解本题考查了切线的性质:圆的切线垂直
18、于经过切点的半径也考查了圆周角定理11.【答案】3【解析】解:6人中身高最高的为169cm,最矮的有166cm;极差是:169-166=3(cm);故答案为:3用最大值减去最小值即可得出答案此题考查了极差,求极差的方法是最大值减去最小值12.【答案】【解析】解:扇形的圆心角为120,半径为32,它的弧长为:12032180=,故答案为:根据题目中的数据和弧长公式,可以计算出该扇形的弧长本题考查弧长的计算,解答本题的关键是明确弧长的计算公式l=nr18013.【答案】2-2d1【解析】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,OP过顶点A
19、时,点O与边AB上所有点的连线中,OA最大,此时d=PA最小, 如图:正方形ABCD边长为2,O为正方形中心,AE=1,OAE=45,OEAB,OE=1,OP=2,d=PE=1;如图:正方形ABCD边长为2,O为正方形中心,AE=1,OAE=45,OEAB,OA=2,OP=2,d=PA=2-2;d的取值范围为2-2d1故答案为:2-2d1由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,OP过正方形ABCD的顶点时,d最小,分别求出d的值即可得出答案本题考查正方形的性质,旋转的性质,根据题意得出d最大、最小时点P的位置是解题的关键14.【答案】1n10【解析】【分析】本题考查二
20、次函数的性质,解题的关键是掌握二次函数的图象及性质由题意可知-2m2,根据m的范围即可确定n的范围【解答】解:y=x2+2x+2=(x+1)2+1,二次函数y=x2+2x+2的图象开口向上,顶点为(-1,1),对称轴是直线x=-1,P(m,n)到y轴的距离小于2,-2m2,而-1-(-2)2-(-1),当m=2,n=(2+1)2+1=10,当m=-1时,n=1,n的取值范围是1n10,故答案为:1n1015.【答案】y=-3x【解析】解:如图,过点C作CTy轴于点T,过点D作DHCT交CT的延长线于点H tanABO=AOOB=3,可以假设OB=a,OA=3a,四边形ABCD是正方形,AB=B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 江苏省 苏州市 工业园区 联考 中考 数学 试卷 答案 解析
链接地址:https://www.77wenku.com/p-239500.html