江苏省南京市2023届高三二模数学试卷(含答案解析)
《江苏省南京市2023届高三二模数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《江苏省南京市2023届高三二模数学试卷(含答案解析)(22页珍藏版)》请在七七文库上搜索。
1、江苏省南京市2023届高三二模数学试题一、选择题:本大题共8小题,每小题5分,共40分 1. 集合的子集个数为( )A 2B. 4C. 8D. 162. 已知复数满足,其中虚数单位,则为( )A B. C. D. 3. 在中,角,的对边分别为,若,则角的大小为( )A. B. C. D. 4. 在运动会中,甲、乙、丙参加了跑步、铅球、标枪三个项目,每人参加的比赛项目不同已知乙没有参加跑步;若甲参加铅球,则丙参加标枪;若丙没有参加铅球,则甲参加铅球下列说法正确的为( )A. 丙参加了铅球B. 乙参加了铅球C. 丙参加了标枪D. 甲参加了标枪5. 大衍数列来源于乾坤谱中对易传“大衍之数五十”的推论
2、,主要用于解释中国传统文化中的太极衍生即太极生两仪原理,如图所示(图中表示太极,表示阳仪、表示阴仪)若数列的每一项都代表太极衍生过程中经历过的两仪数量总和,即为天一对应的经历过的两仪数量总和0,为衍生到地二时经历过的两仪数量总和2,为衍生到天三时经历过的两仪数量总和4,按此规律,则为( )A. 84B. 98C. 112D. 1286. 直角三角形中,斜边长为2,绕直角边所在直线旋转一周形成一个几何体若该几何体外接球表面积为,则长为( )A. B. 1C. D. 7. 已知椭圆,为其左焦点,直线与椭圆交于点,且若,则椭圆的离心率为( )A. B. C. D. 8. 已知函数是定义在上的可导函数
3、,其导函数为若对任意有,且,则不等式的解集为( )A. B. C. D. 二、选择题:本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上全部选对得5分,部分选对得2分,不选或有错选的得0分9. 在的展开式中( )A. 常数顼为160B. 含项的系数为60C. 第4项的二项式系数为15D. 所有项的系数和为110. 若实数,满足,则( )A. B. C. D. 11. 已知函数,下列说法正确的为( )A. 若,则函数与的图象有两个公共点B. 若函数与的图象有两个公共点,则C. 若,则函数有且仅有两个零点D. 若在和处切线相互垂直,则1
4、2. 已知四棱柱的底面为正方形,则( )A. 点在平面内的射影在上B. 平面C. 与平面的交点是的重心D. 二面角的大小为三、填空题:本大题共4小题,每小题5分,共20分请把答案填写在答题卡相应位置上13. 若直线被圆截得的弦长为2,则实数的值为_14. 幂函数满足:任意有,且,请写出符合上述条件的一个函数_15. 一个袋子中有个红球和5个白球,每次从袋子中随机摸出2个球若“摸出的两个球颜色不相同”发生的概率记为,则的最大值为_16. 大约在公元222年,赵爽为周髀算经)一书作序时介绍了“勾股圆方图”,亦称“赵爽弦图”(如图1)某数学兴趣小组类比“赵爽弦图”构造出图2:为正三角形,围成的也为正
5、三角形若为的中点,与的面积比为_;设,则_ 四、解答题:本大题共6小题,共70分请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤17. 已知,(1)若函数图象的两条相邻对称轴之间的距离为,求的值;(2)若函数图象关于对称,且函数在上单调,求的值18. 已知数列的前项和为,(1)求数列的通项公式;(2)求证:19. 在梯形中,如图1现将沿对角线折成直二面角,如图2,点在线段上(1)求证:;(2)若点到直线的距离为,求的值20. 进行独立重复试验,设每次成功的概率为,则失败的概率为,将试验进行到恰好出现次成功时结束试验,以表示试验次数,则称服从以,为参数的帕斯卡分布或负二项
6、分布,记为(1)若,求;(2)若,求;要使得在次内结束试验的概率不小于,求的最小值21. 已知函数,(1)若,求证:;(2)若关于的不等式的解集为集合,且,求实数的取值范围22. 已知拋物线和圆(1)若抛物线的准线与轴相交于点,是过焦点的弦,求的最小值;(2)已知,是拋物线上互异的三个点,且点异于原点若直线,被圆截得的弦长都为2,且,求点的坐标江苏省南京市2023届高三二模数学试题一、选择题:本大题共8小题,每小题5分,共40分 1. 集合的子集个数为( )A. 2B. 4C. 8D. 16【答案】B【解析】【分析】确定,再计算子集个数得到答案.【详解】,故子集个数为.故选:B2. 已知复数满
7、足,其中为虚数单位,则为( )A. B. C. D. 【答案】C【解析】【分析】计算,再计算共轭复数得到答案.【详解】,则.故选:C3. 在中,角,的对边分别为,若,则角的大小为( )A. B. C. D. 【答案】B【解析】【分析】根据正弦定理结合三角恒等变换得到,解得答案.【详解】,即,即,则,则,故,故,.故选:B4. 在运动会中,甲、乙、丙参加了跑步、铅球、标枪三个项目,每人参加的比赛项目不同已知乙没有参加跑步;若甲参加铅球,则丙参加标枪;若丙没有参加铅球,则甲参加铅球下列说法正确的为( )A. 丙参加了铅球B. 乙参加了铅球C. 丙参加了标枪D. 甲参加了标枪【答案】A【解析】【分析
8、】由可得乙参加铅球或标枪,假设乙参加铅球,推出矛盾得到乙参加标枪,从而得到丙、甲所参加的项目,即可判断.【详解】由乙没有参加跑步,则乙参加铅球或标枪,若乙参加铅球,则丙就没有参加铅球,由可知甲参加铅球,故矛盾,所以乙参加标枪,显然丙没有参加标枪,则丙参加铅球,甲参加跑步,综上可得:甲参加跑步,乙参加标枪,丙参加铅球.故选:A5. 大衍数列来源于乾坤谱中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生即太极生两仪原理,如图所示(图中表示太极,表示阳仪、表示阴仪)若数列的每一项都代表太极衍生过程中经历过的两仪数量总和,即为天一对应的经历过的两仪数量总和0,为衍生到地二时经历过的两
9、仪数量总和2,为衍生到天三时经历过的两仪数量总和4,按此规律,则为( )A. 84B. 98C. 112D. 128【答案】C【解析】【分析】表示衍生到天十五时经历过的两仪数量总和,计算得到答案.【详解】表示衍生到天十五时经历过的两仪数量总和,则.故选:C6. 直角三角形中,斜边长为2,绕直角边所在直线旋转一周形成一个几何体若该几何体外接球表面积为,则长为( )A. B. 1C. D. 【答案】D【解析】【分析】设,则,依题意可得旋转后得到的几何体为圆锥,根据外接球的表面积求出球的半径,设外接球的球心为,则球心在直线上,利用勾股定理得到方程,即可求出.【详解】设,因为,所以,绕直角边所在直线旋
10、转一周形成一个几何体为圆锥,设圆锥外接球的半径为,所以,解得,设外接球的球心为,则球心在直线上,所以,解得.故选:D7. 已知椭圆,为其左焦点,直线与椭圆交于点,且若,则椭圆的离心率为( )A. B. C. D. 【答案】A【解析】【分析】设椭圆的右焦点为,连接,设,根据余弦定理得到,计算得到离心率.【详解】设椭圆的右焦点为,连接,故四边形为平行四边形,设,则,中,整理得到,即,故.故选:A8. 已知函数是定义在上的可导函数,其导函数为若对任意有,且,则不等式的解集为( )A. B. C. D. 【答案】D【解析】【分析】构造,确定函数单调递增,计算,转化得到,根据单调性得到答案.【详解】设,
11、则恒成立,故函数在上单调递增.,则,即,故.,即,即,故,解得.故选:D二、选择题:本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上全部选对得5分,部分选对得2分,不选或有错选的得0分9. 在展开式中( )A. 常数顼为160B. 含项的系数为60C. 第4项的二项式系数为15D. 所有项的系数和为1【答案】BD【解析】【分析】利用二项式定理得到展开式的通项,分别取代入计算得到答案.【详解】展开式的通项为.对选项A:取得到常数项为,错误;对选项B:取得到含项的系数为,正确;对选项C:取得到第4项的二项式系数为,错误;对选项D:取得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 南京市 2023 届高三二模 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-242223.html