2023年山东省青岛市李沧区中考二模数学试卷(含答案解析)
《2023年山东省青岛市李沧区中考二模数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2023年山东省青岛市李沧区中考二模数学试卷(含答案解析)(36页珍藏版)》请在七七文库上搜索。
1、2023年山东省青岛市李沧区中考二模数学试题一、选择题(本大题共8小题,每小题3分,共24分)1. 下列各数中最小的是( )A B. C. D. 22. 下列图形中是轴对称图形有( )A. 1个B. 2个C. 3个D. 4个3. 为了加快构建清洁低碳、安全高效的能源体系,国家发布关于促进新时代新能源高质量发展的实施方案,旨在锚定到2030年,我国风电、太阳能发电总装机容量达到1200000000千瓦以上的目标数字1200000000用科学记数法表示为( )A. B. C. D. 4. 下列计算正确的是( )A. B. C. D. 5. 如图,在直角坐标系中,线段是将绕着点逆时针旋转一定角度后得
2、到的的一部分,则点的对应点的坐标是( )A B. C. D. 6. 如图,在中,顶点,均在上,为的直径若,则的度数为( )A. B. C. D. 7. 如图,在菱形中,对角线, 相交于点,点为的中点若,则菱形的面积大小为( )A. 18B. C. 36D. 8. 如图,已知抛物线与轴交于点,对称轴为直线则下列结论:;函数的最大值为;若关于的方程有两个相等的实数根,则正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,每小题3分,共18分)9. 计算的结果是 _10. 一个口袋中有红球、白球共10个,这些球除颜色外都相同将口袋中的球搅拌均匀,从中随机摸出一个球,
3、记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球则估计这个口袋中白球的个数为_11. 今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s21.82.31.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是_12. 由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示图形,则搭成该几何体的小正方体的个数为_13. 如图,是等腰三角形,是底边上的一点,半圆与交于,两点,与相切于点,若,则的长为_14. 如图,在平面直角坐标系
4、中,二次函数的图象与坐标轴相交于A,B,C三点,连接,已知点E坐标为,点D在线段上,且则四边形面积的大小为_三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹15. 已知:如图,线段求作:,使,且四、解答题(本大题共10小题,共74分)16 (1)解不等式组:; (2)解二元一次方程组:17. 圆周率是无限不循环小数历史上,中国数学家祖冲之、刘徽,外国数学家韦达、欧拉等都对有过深入的研究目前,超级计算机已计算出的小数部分超过31.4万亿位有学者发现,随着小数部分位数的增加,09这10个数字出现的频率趋于稳定,接近相同(1)从的小数部分随机取出一个数字,估计该数字是偶数的概率
5、为_;(2)某校进行校园文化建设,拟从以上4位数学家的画像中随机选用2幅请用列表或画树状图的方法,求选中的画像正好是一中一外两位数学家的概率18. 第六届数字中国建设成果展览会于月日在福州海峡国际会展中心盛大开展,本届成果展览会全方位融入数字孪生、虚拟交互等多种技术,让观众现场触摸数字、感知数字,在趣味互动中尽享数字成果,体验数字生活的精彩某学校在全校范围内开展了数字中国建设相关知识的竞赛,从中随机抽取男生、女生各名同学的竞赛成绩(满分50分)进行整理:男生竞赛成绩用表示共分成四组,制成如下的扇形统计图:;:;:;:;男生在组的数据个数为个;名女生的竞赛成绩为:男生、女生各名同学的竞赛成绩分析
6、如下表:性别平均数中位数众数满分率男生女生根据以上信息,解答下列问题:(1)填空:_,_,_;(2)根据以上数据,你认为该校女生与男生的竞赛成绩谁更好?请说明理由;(3)若该校有名男生和名女生,估计该校竞赛成绩为满分的人数19. 如图1,一吸管杯放置在水平桌面上,矩形为其横截面,为吸管,其示意图如图所示,将杯子绕点按顺时针方向旋转,使与水平线平行(如图3)(1)杯子与水平线的夹角_;(2)由图2到图3,点A的位置是升高了还是下降了?变化了多少厘米?(结果精确到,参考数据:,)20. 如图,的顶点与原点重合,点在反比例函数的图象上,点的坐标为,与轴平行,(1)求的值;(2)已知一次函数与的图象交
7、于两点,若点的坐标为请直接写出时的取值范围21. “节能减排,绿色出行”,越来越多的人喜欢骑自行车出行某自行车车行经营的型自行车去年销售总额为元,今年该自行车每辆售价比去年降低元若该自行车今年的销售总额与去年相同,那么今年的销售总量需要比去年增加请解答以下问题:(1)型自行车今年每辆售价为多少?(2)该车行今年计划新进一批型车和新款型车共辆,且型进货数量不超过型车数量的倍型车和型车每辆的进价分别为元和元,型车每辆的售价为元,该自行车行应如何组织进货才能使这批自行车获利最多?获利最多是多少?22. 如图,在四边形中,点为对角线上的两点,且,连接(1)求证:;(2)从下列条件中任选一个作为已知条件
8、后,试判断四边形的形状,并证明你的结论选择的条件:_(填写序号)(注:如果选择,分别进行解答,按第一个解答计分),23. 某校在趣味运动会中设计了一个弹珠投箱子的游戏(长方体无盖箱子放在水平面上),在规定时间内以投入箱子弹珠的多少决定胜负小明受游戏启发,将弹珠抽象为一个点,并建立了如图所示的平面直角坐标系(单位长度为,轴经过箱子底面中心,并与其一组对边平行,矩形为箱子的截面示意图)某同学将弹珠从处抛出,弹珠的飞行轨迹为抛物线的一部分,且当弹珠的高度为时,对应的两个位置,的水平距离为已知,(1)求此抛物线的关系式;(2)该同学抛出的弹珠能否投入箱子?请通过计算说明24. 如图1,是高,点E,F分
9、别在边和上,且由“相似三角形对应高的比等于对应边的比”可以得到以下结论:(1)如图2,在中,边上的高为8,在内放一个正方形,使其一边在上,点M,N分别在,上,则正方形的边长_;(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm,底边长为120cm的等腰三角形展台现需将展台用平行于底边的隔板,每间隔10cm分隔出一层,再将每一层尽可能多的分隔成若干个开口为正方形的长方体格子,要求每个格子内放置一瓶葡萄酒,平面设计图如图3所示,将底边的长度看作是第0层隔板的长度;在分隔的过程中发现,当隔板厚度忽略不计时,每层平行于底边的隔板长度(单位:cm)随着层数(单位:层)的变化而变化请完成下表:层
10、数/层0123隔板长度/cm120_在的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?25. 如图,是等边三角形,动点从点出发,沿方向运动,运动速度为,同时,动点从点出发,沿方向运动,运动速度为过点作的平行线,交于点,以,为邻边作平行四边形,连接当点和点重合时,运动停止设运动的时间为(1)当为何值时,平行四边形为菱形?(2)设的面积为,写出与的函数关系式;(3)连接,是否存在某一时刻,使为等腰三角形?若存在求出值,若不存在,请说明理由2023年山东省青岛市李沧区中考二模数学试题一、选择题(本大题共8小题,每小题3分,共24分)1. 下列各数中最小的是( )A. B. C. D. 2【答案】
11、A【解析】【分析】根据有理数比较大小的方法解答即可;正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小.【详解】解:因为,所以最小的数是;故选:A.【点睛】本题考查了有理数的大小比较,属于应知应会题目,熟练掌握比较有理数大小的方法是关键.2. 下列图形中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:第,4个图形均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;第2个图形,不能找到这样的一
12、条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;故选:C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3. 为了加快构建清洁低碳、安全高效的能源体系,国家发布关于促进新时代新能源高质量发展的实施方案,旨在锚定到2030年,我国风电、太阳能发电总装机容量达到1200000000千瓦以上的目标数字1200000000用科学记数法表示为( )A. B. C. D. 【答案】B【解析】【分析】根据科学记数法的表示方法求解即可【详解】故选:B【点睛】本题主要考查科学记数法科学记数法的表示形式为的形式,其中,n为整数解题关键是正确确定a的值以及n的
13、值4. 下列计算正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,多项式除以单项式进行计算即可求解【详解】解:A. ,故该选项不正确,不符合题意; B. ,故该选项不正确,不符合题意; C. ,故该选项不正确,不符合题意; D. ,故该选项正确,符合题意;故选:D【点睛】本题考查了同底数幂的乘法,幂的乘方,完全平方公式,多项式除以单项式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式,多项式除以单项式的运算法则是解题的关键5. 如图,在直角坐标系中,线段是将绕着点逆时针旋转一定角度后得到的的一部分,则点的对应点的坐标是( )A. B.
14、C. D. 【答案】D【解析】【分析】连接求得旋转角为,进而画出点,根据坐标系即可求解【详解】解:如图所示,连接,根据题意,画出绕点,逆时针旋转的点根据坐标系可得,故选:D【点睛】本题考查了勾股定理求两点距离,勾股定理的逆定理求角度,画旋转图形,熟练掌握旋转的性质,求得旋转角是解题的关键6. 如图,在中,顶点,均在上,为的直径若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】根据直径所对的圆周角是直角,得出,根据同弧所对的圆周角相等,得出,进而得出,根据等腰三角形的性质以及三角形内角和定理得出,然后根据同弧所对的圆周角相等即可求解【详解】为的直径,故选:B【点睛】本题考查了
15、直径所对的圆周角是直角,同弧所对的圆周角相等,等腰三角形的性质,三角形内角和定理,熟练掌握以上知识是解题的关键7. 如图,在菱形中,对角线, 相交于点,点为的中点若,则菱形的面积大小为( )A. 18B. C. 36D. 【答案】B【解析】【分析】由菱形的性质可为直角三角形,根据锐角三角函数值得到、,求、的长,由菱形的面积公式可求解【详解】解:四边形是菱形,,为直角三角形,点为的中点, , ,菱形的面积= 故选:B【点睛】本题考查了菱形的性质,锐角三角函数,熟练运用菱形面积公式是本题的关键8. 如图,已知抛物线与轴交于点,对称轴为直线则下列结论:;函数的最大值为;若关于的方程有两个相等的实数根
16、,则正确的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由图象可知,图像开口向下,对称轴为,故,故,且,则 图象与轴交点为正半轴,则,由此可知,故错误,由图象可知当时,函数取最大值,将,代入,中得:,计算出函数图象与轴的另一交点为设函数解析式为:,将交点坐标代入得化简得:,将,代入可得:,故函数的最大值为,变形为:有两个相等的实数根,则,将,代入得:,因为,则,则,结合以上结论可判断正确的项【详解】解:由图象可知,图像开口向下,对称轴为,故,故,且,则故正确,图象与轴的交点为正半轴,则,故正确,由图象可知当时,函数取最大值,将,代入,中得:,由图象可知函数与轴交
17、点为,对称轴为将,故函数图象与轴的另一交点为,设函数解析式为:,将交点坐标代入得:,故化简得:,将,代入可得:,故函数的最大值为,故正确,变形为:有两个相等的实数根,则,将,代入得:,因为,则,则,故不正确则正确,故选:C【点睛】本题考查二次函数的一般式,二次函数的交点式,二次函数的最值,对称轴,以及交点坐标掌握数形结合思想是解决本题的关键二、填空题(本大题共6小题,每小题3分,共18分)9. 计算的结果是 _【答案】a+1【解析】【分析】先把括号内通分化简,并把除法转化为乘法,然后分解因式约分即可详解】解:原式a+1故答案为:a+1【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关
18、键10. 一个口袋中有红球、白球共10个,这些球除颜色外都相同将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球则估计这个口袋中白球的个数为_【答案】2【解析】【分析】根据题意可以先求出红球的个数,进而可得答案【详解】解:根据题意,口袋中的红球的个数大约为个,则估计这个口袋中白球的个数为个,故答案为:2【点睛】本题考查了用频率估计概率,正确理解题意、掌握解答方法是关键11. 今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s21
19、.82.31.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是_【答案】甲【解析】【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 山东省 青岛市 李沧区 中考 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-243178.html