2023年高考全国乙卷数学理科试题(含答案解析)
《2023年高考全国乙卷数学理科试题(含答案解析)》由会员分享,可在线阅读,更多相关《2023年高考全国乙卷数学理科试题(含答案解析)(29页珍藏版)》请在七七文库上搜索。
1、2023年高考全国乙卷数学理科试卷一、选择题1. 设,则( )A. B. C. D. 2. 设集合,集合,则( )A. B. C. D. 3. 如图,网格纸上绘制一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( ) A. 24B. 26C. 28D. 304. 已知是偶函数,则( )A. B. C. 1D. 25. 设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A. B. C. D. 6. 已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则( )A. B. C. D. 7. 甲乙两位同学从6种课外读物中各自选读2种,则这
2、两人选读的课外读物中恰有1种相同的选法共有( )A. 30种B. 60种C. 120种D. 240种8. 已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,若的面积等于,则该圆锥的体积为( )A. B. C. D. 9. 已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )A. B. C. D. 10. 已知等差数列的公差为,集合,若,则( )A. 1B. C. 0D. 11. 设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )A B. C. D. 12. 已知的半径为1,直线PA与相切于点A,直线PB与交于B,C
3、两点,D为BC的中点,若,则的最大值为( )A. B. C. D. 二、填空题13. 已知点在抛物线C:上,则A到C的准线的距离为_.14. 若x,y满足约束条件,则的最大值为_.15. 已知为等比数列,则_.16. 设,若函数在上单调递增,则a的取值范围是_.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,试验结果如下:试验序号12345678910伸缩率54553355152257554
4、4541568596548伸缩率536527543530560533522550576536记,记的样本平均数为,样本方差为(1)求,;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18. 在中,已知,.(1)求;(2)若D为BC上一点,且,求的面积.19. 如图,在三棱锥中,BP,AP,BC中点分别为D,E,O,点F在AC上,.(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.20. 已知椭圆的离心率是,点在上(1)求的方程
5、;(2)过点直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点21. 已知函数.(1)当时,求曲线在点处的切线方程;(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.(3)若在存在极值,求a的取值范围.四、选做题【选修4-4】(10分)22. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线:(为参数,).(1)写出的直角坐标方程;(2)若直线既与没有公共点,也与没有公共点,求的取值范围.【选修4-5】(10分)23 已知.(1)求不等式的解集;(2)在直角坐标系中,求不等式组所确定的平面区域的面积.2023年高
6、考全国乙卷数学理科试卷一、选择题1. 设,则( )A. B. C. D. 【答案】B【解析】【分析】由题意首先计算复数的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得,则.故选:B.2. 设集合,集合,则( )A. B. C. D. 【答案】A【解析】【分析】由题意逐一考查所给的选项运算结果是否为即可.【详解】由题意可得,则,选项A正确;,则,选项B错误;,则或,选项C错误;或,则或,选项D错误;故选:A.3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( ) A. 24B. 26C. 28D. 30【答案】D【解析】【分析】由题意首先由
7、三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体中,点为所在棱上靠近点的三等分点,为所在棱的中点,则三视图所对应的几何体为长方体去掉长方体之后所得的几何体, 该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:.故选:D.4. 已知是偶函数,则( )A. B. C. 1D. 2【答案】D【解析】【分析】根据偶函数的定义运算求解.【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.5. 设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A. B. C
8、. D. 【答案】C【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域表示以圆心,外圆半径,内圆半径的圆环,则直线的倾斜角不大于的部分如阴影所示,在第一象限部分对应的圆心角,结合对称性可得所求概率.故选:C. 6. 已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则( )A. B. C. D. 【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入即可得到答案.【详解】因为在区间单调递增,所以,且,则,当时,取得最小值,则,则,不妨取,则,则,故选:D.7. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1
9、种相同的选法共有( )A. 30种B. 60种C. 120种D. 240种【答案】C【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有种,根据分步乘法公式则共有种,故选:C8. 已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,若的面积等于,则该圆锥的体积为( )A. B. C. D. 【答案】B【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在中,而,取中点,
10、连接,有,如图,由的面积为,得,解得,于是,所以圆锥的体积.故选:B9. 已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )A. B. C. D. 【答案】C【解析】分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取的中点,连接,因为是等腰直角三角形,且为斜边,则有,又是等边三角形,则,从而为二面角的平面角,即,显然平面,于是平面,又平面,因此平面平面,显然平面平面,直线平面,则直线在平面内的射影为直线,从而为直线与平面所成的角,令,则,在中,由余弦定理得:,由正弦定理得,即,显然是锐角,所以直线与平面所成的角
11、的正切为.故选:C10. 已知等差数列的公差为,集合,若,则( )A. 1B. C. 0D. 【答案】B【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列中,显然函数的周期为3,而,即最多3个不同取值,又,则在中,或,于是有,即有,解得,所以,.故选:B11. 设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )A. B. C. D. 【答案】D【解析】【分析】根据点差法分析可得,对于A、B、D:通过联立方程判断交点个数,逐项分析判断;对于C:结合双曲线的渐近线分析判断.【详解】设,则的中点,可得,因为
12、在双曲线上,则,两式相减得,所以.对于选项A: 可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故A错误;对于选项B:可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故B错误;对于选项C:可得,则由双曲线方程可得,则为双曲线的渐近线,所以直线AB与双曲线没有交点,故C错误;对于选项D:,则,联立方程,消去y得,此时,故直线AB与双曲线有交两个交点,故D正确;故选:D.12. 已知的半径为1,直线PA与相切于点A,直线PB与交于B,C两点,D为BC的中点,若,则的最大值为( )A. B. C. D. 【答案】A【解析】【分析】由题意作出示意图,然后分类讨论,利
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 全国 数学 理科 试题 答案 解析
链接地址:https://www.77wenku.com/p-244622.html