3.4函数的应用(一)优秀教研导学案(2022-2023学年人教A版(2019)必修第一册)
《3.4函数的应用(一)优秀教研导学案(2022-2023学年人教A版(2019)必修第一册)》由会员分享,可在线阅读,更多相关《3.4函数的应用(一)优秀教研导学案(2022-2023学年人教A版(2019)必修第一册)(14页珍藏版)》请在七七文库上搜索。
1、3.4函数的应用(一)课标要求素养要求1.理解函数模型是描述客观世界中变量关系和规律的重要性.2.会利用已知函数模型解决实际问题.通过本节课的学习,使学生体会常见函数的变化异同,提升学生数学抽象、数学建模、数据分析等素养.教材知识探究随着经济和社会的发展,汽车已逐步成为人们外出的代步工具.下面是某地一汽车销售公司对近三年的汽车销售量的统计表:年份201520162017销量/万辆81830结合以上三年的销量及人们生活的需要,2018年初,该汽车销售公司的经理提出全年预售43万辆汽车的远大目标,经过全体员工的共同努力,2018年实际销售44万辆,圆满完成销售目标.问题1在实际生产生活中,对已收集
2、到的样本数据常采用什么方式获取直观信息?问题2如果我们分别将2015,2016,2017,2018年定义为第一、二、三、四年,现在有两个函数模型:二次函数型f(x)ax2bxc(a0),一次函数模型g(x)axb(a0),哪个模型能更好地反映该公司年销量y与第x年的关系?问题3依照目前的形势分析,你能预测一下2019年,该公司预销售多少辆汽车吗?提示1.建立函数模型.2.通过计算二次函数能更好地反映该公司中的年销量.3.2019年,该公司预销售60万辆汽车.1.常见的函数模型常见函数模型一次函数模型ykxb(k,b为常数,k0)二次函数模型yax2bxc(a,b,c为常数,a0)幂函数模型ya
3、xb(a,b为常数,a0,1)2.解决函数应用问题的步骤(1)利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.(2)这些步骤用框图表示如图:教材拓展补遗微判断1.当x每增加一个单位时,y增加或减少的量为定值,则y是x的一次函数.()2.在某种金属材料的耐高温实验中,温度y()随着时间t(min)变化的情况由计算机记录后显示的图象如图所示.判断下列说法的正误:(1)前5分钟温度增加越来越快.()(2)前5分钟温度增加越来越慢.()(3)5分钟后温度保持匀速增加.()(4)5分钟后温度保持不变.()微训练1.一个矩形的周长是40,矩形的
4、长y关于宽x的函数解析式为_.解析由题意可知2y2x40,即y20x,易知0x10.答案y20x(00)增长特点是直线上升,增长速度不变.二次函数模型yax2bxc(a0)的最值容易求出,常常用于最优、最省等最值问题,幂函数yaxnb(x0,n0,a0)随x的增大而增大,但增长的速度相对平稳,图象随n的变化而变化.题型一 一次函数模型函数的图象确定了函数的类型【例1】为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费用y(元)的关系如图所示.(1)分别求出通话费用y1,y2与通话时间x之间的函
5、数解析式;(2)请帮助用户计算在一个月内使用哪种卡便宜.解由图象可设y1k1x30(k10),y2k2x(k20),把点B(30,35),C(30,15)分别代入y1k1x30,y2k2x,得k1,k2.y1x30(x0),y2x(x0).(2)令y1y2,即x30x,则x90.当x90时,y1y2,两种卡收费一致;当xy2,使用便民卡便宜;当x90时,y1y2,使用如意卡便宜.规律方法在用函数刻画实际问题时,除了用函数解析式刻画外,函数图象也能够发挥很好的作用,因此,应注意提高读图的能力.【训练1】某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是
6、定价的一次函数,则这个函数解析式为_.解析设解析式为ykxb(k0),由解得k,b50,yx50(0x200).答案yx50(0x200)题型二幂函数与二次函数模型【例2】(1)某药厂研制出一种新型药剂,投放市场后其广告投入x(万元)与药品利润y(万元)存在的关系为yx(为常数),其中x不超过5万元.已知去年投入广告费用为3万元时,药品利润为27万元,若今年广告费用投入5万元,预计今年药品利润为_万元.(2)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,
7、商场以高于成本价的价格(标价)出售.问:商场要获取最大利润,羊毛衫的标价应定为每件多少元?通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?(1)解析由已知投入广告费用为3万元时,药品利润为27万元,代入yx中,即327,解得3,故函数关系式为yx3.所以当x5时,y125.答案125(2)解设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,则x(100,300,nkxb(k0),0300kb,即b300k,nk(x300).利润y(x100)k(x300)k(x200)210 000k(x(100,300),k0,x200时,ym
8、ax10 000k,即商场要获取最大利润,羊毛衫的标价应定为每件200元.由题意得k(x100)(x300)10 000k75%,x2400x37 5000,解得x250或x150,所以,商场要获取最大利润的75%,每件标价为250元或150元.规律方法1.幂函数应用的常见题型(1)给出含参数的函数关系式,利用待定系数法求出参数,明确函数关系式.(2)根据题意直接列出相应的函数关系式.2.利用二次函数求最值的方法及注意点(1)方法:根据实际问题建立函数模型解析式后,可利用配方法、判别式法、换元法以及函数的单调性等方法求最值,从而解决实际问题中的利润最大、用料最省等最值问题.(2)注意:取得最值
9、时的自变量与实际意义是否相符.【训练2】据市场分析,烟台某海鲜加工公司,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.(1)写出月总成本y(万元)关于月产量x(吨)的函数关系;(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?解(1)设ya(x15)217.5(a0),将x10,y20代入上式,得2025a17.5,解得a.所以y(x15)217.5(10x25).(2)设最大利润为Q(x),则Q(x)1.6xy1.6x(x23
10、)212.9(10x25).所以月产量为23吨时,可获最大利润12.9万元.题型三分段函数模型【例3】经市场调查,某城市的一种小商品在过去的近20天内的日销售量(件)与价格(元)均为时间t(天)的函数,且日销售量近似满足g(t)802t(件),价格近似满足于f(t)(元).(1)试写出该种商品的日销售额y与时间t(0t20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.解(1)由已知,由价格乘以销售量可得:y(2)由(1)知当0t10时,yt210t1 200(t5)21 225,函数图象开口向下,对称轴为t5,该函数在t0,5单调递增,在t(5,10单调递减,ymax1 225
11、(当t5时取得),ymin1 200(当t0或10时取得);当10t20时,yt290t2 000(t45)225,函数图象开口向上,对称轴为t45,该函数在t(10,20单调递减,ymax1 200(当t10时取得),ymin600(当t20时取得).由知ymax1 225(当t5时取得),ymin600(当t20时取得).规律方法应用分段函数时的三个注意点(1)分段函数的“段”一定要分得合理,不重不漏.(2)分段函数的定义域为对应每一段自变量取值范围的并集.(3)分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论.【训练3】某种商品在30天内每件的销售价格P(元)与时间t(tN)(
12、天)的函数关系用如图的两条线段表示,该商品在30天内日销售量Q(件)与时间t(tN)(天)之间的关系如下表:t/天5102030Q/件35302010(1)根据提供的图象(如图),写出该商品每件的销售价格P与时间t的函数关系式;(2)根据上表提供的数据,写出日销售量Q与时间t的一个函数关系式;(3)求该商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额每件的销售价格日销售量).解(1)由已知可得:P(2)日销售量Q与时间t的一个函数式为Qt40(0t30,tN),(3)由题意y当0t25,t10时,ymax900,当25t30,t25时,ymax(2570)290
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.4 函数 应用 优秀 教研 导学案 2022 2023 学年 2019 必修 一册
链接地址:https://www.77wenku.com/p-245405.html