3.2.2奇偶性 导学案(2022-2023学年人教A版(2019)必修第一册)
《3.2.2奇偶性 导学案(2022-2023学年人教A版(2019)必修第一册)》由会员分享,可在线阅读,更多相关《3.2.2奇偶性 导学案(2022-2023学年人教A版(2019)必修第一册)(5页珍藏版)》请在七七文库上搜索。
1、3.2.2奇偶性1.使学生了解奇函数、偶函数的定义;X2、使学生了解奇函数、偶函数图象的对称性;3、使学生会用定义判断函数的奇偶性;4.培养学生判断、推理的能力,加强化归转化能力的训练。1.教学重点:奇函数、偶函数的定义,判断函数的奇偶性;2.教学难点:用定义判断函数的奇偶性。一、偶函数条件对于函数f(x)定义域内 ,都有 结论函数f(x)叫做偶函数图象特征偶函数的图象关于 对称,图象关于 对称的函数一定是偶函数.奇函数条件对于函数f(x)定义域内 ,都有 结论函数f(x)叫做奇函数图象特征奇函数的图象关于 对称,图象关于 对称的函数一定是奇函数.一、探索新知探究一 偶函数1.在平面直角坐标系
2、中,利用描点法作出函数的图象,并观察这两个函数图象.思考1.总结出它们的共同特征.思考2.对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(-3)与f(3),f(x)与f(-x)有什么关系?2.偶函数定义:一般地,如果对于函数f(x)的定义域内 ,都有 , 那么函数f(x) 就叫做偶函数.3.思考:定义中“任意一个x,都有f(-x)=f(x)成立”说明了什么?结论:(1)偶函数的图象关于y轴对称. (2)偶函数的定义域关于原点对称.牛刀小试 判断下列函数是否为偶函数。探究二 奇函数1.观察函数和的图象,并完成下面的两个函数值对应表,你能发现这两个函数有什么共同特征吗?2、奇函数
3、定义: 一般地,如果对于函数f(x)的定义域内 ,都有 ,那么函数f(x)就叫做奇函数奇函数的图象特征:奇函数的图象关于 对称,反之,一个函数的图象关于 对称,那么它是奇函数注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称例1:判断下列函数的奇偶性:(1) (2) (3) (4)总结:利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其定义域是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.2
链接地址:https://www.77wenku.com/p-245409.html