2023-2024学年浙江省温州市八年级上期中复习数学试卷含答案(考试范围:第1-3章)
《2023-2024学年浙江省温州市八年级上期中复习数学试卷含答案(考试范围:第1-3章)》由会员分享,可在线阅读,更多相关《2023-2024学年浙江省温州市八年级上期中复习数学试卷含答案(考试范围:第1-3章)(31页珍藏版)》请在七七文库上搜索。
1、2023-2024学年浙江省温州市八年级上期中复习数学试卷(考试范围:第1-3章)一、 选择题(10小题,每小题3分,共30分)1如图所标数据,下面说法正确的是()A是等腰三角形B是等腰三角形C和均是等腰三角形D和都不是等腰三角形2以下是某些运动会会标,其中是轴对称图形的是()ABCD3下列条件中,不能判定与一定全等的是()A,B,C,D,4将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果求这一箱苹果的个数与小朋友的人数若设有x人,则可列不等式组为()ABCD5如图,点为内一点,分别作出点关于、的对称点,连接交于
2、,交于,若,则的度数是()ABCD6如图,中,是的角平分线,是高线,当,时,的度数为()ABCD7若关于的不等式组无解,则的取值范围是()ABCD8公元三世纪,我国汉代数学家赵爽在注解周髀算经题时给出了“赵爽弦图”将两个“赵爽弦图”(如图)中的两个正方形和八个直角三角形按图方式摆放围成正方形,记空隙处正方形,正方形的面积分别为,若,则正方形的面积为()A144B104C72D529(2023春浙江金华七年级统考期中)如图,图是一个四边形纸条,其中,分别为边上的两个点,将纸条沿EF折叠得到图,再将图沿折叠得到图,若在图中,则的度数为()ABCD10(2023秋浙江八年级专题练习)如图,在和中,连
3、接,交于点F,连接下列结论:;平分;平分其中正确的个数为()A1个B2个C3个D4个二、填空题(6小题,每小题4分,共24分)11(2023秋浙江八年级专题练习)不等式的解集是 12(2023秋浙江杭州八年级阶段练习)如图,在中,平分,D到的距离是 13(2023浙江八年级假期作业)九章算术中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为尺的正方形,一棵芦苇生长在它的中央,高出水面部分为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的处(如图),水深和芦苇长各多少尺?则该问题的
4、水深是 尺14(2023浙江模拟预测)某校科技馆位于一楼的活动室比二楼的活动室少5间,某班48人分组展开活动,若全安排在一楼,每间4人,活动室不够,每间5人,则有些活动室坐不满;若全安排在二楼,每间3人,活动室不够,每间4人,则有些活动室坐不满,该科技馆位于一楼的活动室数为 15(2023秋浙江八年级专题练习)如图,在中,是边上的高线,的平分线交于E,当,的面积为2时,的长为 16(2023秋浙江杭州八年级校联考期末)如图,中,于点D,平分,交与点E,于点F,且交于点G,若,则 三、解答题(8小题,共66分)17(2023秋浙江八年级专题练习)解不等式组,并写出它的所有整数解,并将解集在数轴上
5、表示出来18(2023秋浙江八年级专题练习)如图,在每个小正方形边长为1的方格纸中,的顶点都在方格纸格点上(1)将经过平移后得到,图中标出了点的对应点,补全;(2)在图中画出的高;(3)若连接,则这两条线段之间的位置关系和数量关系_;四边形的面积为_19(2023秋浙江八年级专题练习)如图,是的外角的平分线,且交的延长线于点(1)若,求的度数;(2)请你写出、三个角之间存在的等量关系,并写出证明过程20(2023秋浙江八年级专题练习)骑车佩戴安全头盔,可以保护头部,减少意外伤害,某商店销售进价分别为40元/个、30元/个的甲、乙两种安全头盔,下表是近两天的销售情况:时间甲头盔销量(个)乙头盔销
6、量(个)销售金额(元)周一1010950周二615930(1)求甲、乙两种头盔的销售单价;(2)甲乙两种头盔共售出100个,为实现利润达到1250元的目标,至少需要卖多少个甲头盔21(2023秋浙江杭州八年级校考开学考试)如图所示,点P在内,点M,N分别是点P关于,的对称点,分别交,于点E,F(1)若,求,(用含的代数式表示),写出过程;(2)若的周长是,求的长若,直接写出的周长_22(2023秋浙江金华七年级统考期末)如图,长方形纸片中,G、H分别是、边上的动点,连,将长方形纸片沿着翻折,使得点B,C分别落在点E,F位置(1)若,求的度数(2)若,求的度数(3)已知和始终互补,若,请直接写出
7、的度数(含的代数式)23(2023秋浙江绍兴八年级校考阶段练习)(1)如图(1),已知:在中,直线m经过点A,直线m,直线m,垂足分别为点D、E证明:(2)如图(2),将(1)中的条件改为:在中,D、A、E三点都在直线m上,并且有,其中a为任意锐角或钝角请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由24(2023春浙江宁波七年级校考期末)综合与实践:某数学活动小组在探究三角形时,提出了如下数学问题:(1)【问题情境】已知:如图(1)所示,平面内有三个点A,B,C,则的长度的最小值为_;(2)【深入探究】已知:如图(2)所示,在中,以为底边构造等腰(点A、点D在同侧),连接,以为腰
8、向外构造等腰,使,线段的长度是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;(3)【延伸拓展】如图(3)所示,在中,以为边向外作等边,连接不难发现的长度是个定值,请求出的长度2023-2024学年浙江省温州市八年级上期中复习数学试卷一、选择题(10小题,每小题3分,共30分)1如图所标数据,下面说法正确的是()A是等腰三角形B是等腰三角形C和均是等腰三角形D和都不是等腰三角形【答案】B【分析】根据等腰三角形的性质解答即可【详解】由等腰三角形的判定方法,即可判断解:图,三形的第三边的长不确定,故不一定是等腰三角形;图,三角形的第三个角是,三角形有两个角都是,故是等腰三角形故选:B【点
9、睛】本题考查了等腰三角形的判定与性质,熟知等腰三角形的性质是解题的关键2以下是某些运动会会标,其中是轴对称图形的是()ABCD【答案】B【分析】根据轴对称图形定义判定即可【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项不符合题意;故选:B【点睛】本题考查轴对称图形的概念解题关键是熟练掌握如果一个图形沿着一条直线对折,直线 两旁的部分能够完全正确重合的图形,叫轴对称图形,这条直线叫对称轴3下列条件中,不能判定与一定全等的是()A,B,C,D,【答案】B【分析】解:根据三角形全等的判定方法一
10、次判定即可【详解】解:A、根据可证明,故不符合题意;B、根据不可证明,故符合题意;C、根据可证明,故不符合题意;D、根据可证明,故不符合题意故选B【点睛】本题主要考查全等三角形的判定,掌握角形全等的判定方法是解题的关键4将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果求这一箱苹果的个数与小朋友的人数若设有x人,则可列不等式组为()ABCD【答案】C【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有 个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数大于0,并且小于8,根据不等
11、关系就可以列出不等式【详解】解:设有x人,则苹果有个,由题意得:故选:C【点睛】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系5如图,点为内一点,分别作出点关于、的对称点,连接交于,交于,若,则的度数是()ABCD【答案】B【分析】首先证明,可得,推出,可得结论【详解】解:点关于的对称点是,点关于的对称点是,故选:B【点睛】本题考查轴对称的性质对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等6如图,中,是的角平分线,是高线,当,时,的度数为()ABCD【答案】D
12、【分析】利用三角形内角和定理求出的度数,结合角平分线的定义求出的度数,在中,利用三角形内角和定理,可求出的度数,再将其代入中,即可求出结论【详解】在中,平分,故选:D【点睛】本题考查了三角形内角和定理以及角平分线的定义,牢记“三角形内角和是”是解题的关键7若关于的不等式组无解,则的取值范围是()ABCD【答案】B【分析】先求出两个不等式的解集,再根据题意即可求出的取值范围【详解】由,解不等式得:;解不等式得:;无解,故选:【点睛】此题考查了解一元一次不等式组和解一元一次不等式,解题的关键是得出关于的不等式8公元三世纪,我国汉代数学家赵爽在注解周髀算经题时给出了“赵爽弦图”将两个“赵爽弦图”(如
13、图)中的两个正方形和八个直角三角形按图方式摆放围成正方形,记空隙处正方形,正方形的面积分别为,若,则正方形的面积为()A144B104C72D52【答案】B【分析】设“赵爽弦图”中,直角三角形的较短直角边为,较长直角边为,斜边为,则小正方形的边长为,正方形的边长为,正方形的边长为,正方形的边长为,由正方形面积公式,勾股定理逐项进行判断即可【详解】解:设“赵爽弦图”中,直角三角形的较短直角边为,较长直角边为,斜边为,则小正方形的边长为,正方形的边长为,正方形的边长为,正方形的边长为,或(舍去),解得,故选【点睛】本题主要考查了勾股定理,正方形的面积,关键是设“赵爽弦图”中,直角三角形的较短直角边
14、为,较长直角边为,斜边为,用表示出相关线段的长度,从而解决问题9(2023春浙江金华七年级统考期中)如图,图是一个四边形纸条,其中,分别为边上的两个点,将纸条沿EF折叠得到图,再将图沿折叠得到图,若在图中,则的度数为()ABCD【答案】C【分析】首先根据折叠和平行的性质求出,再由三角形外角的性质求出,结合折叠和平行的性质求出,进而可求【详解】解:由折叠可知:,图中,图中,故选:C【点睛】本题主要考查了平行的性质和翻折的性质,熟练掌握平行的性质和翻折的性质是解题的关键10(2023秋浙江八年级专题练习)如图,在和中,连接,交于点F,连接下列结论:;平分;平分其中正确的个数为()A1个B2个C3个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 2024 学年 浙江省 温州市 年级 上期 复习 数学试卷 答案 考试 范围
链接地址:https://www.77wenku.com/p-251463.html