第八届《希望杯》全国数学邀请赛四年级(第2试)试卷附答案
《第八届《希望杯》全国数学邀请赛四年级(第2试)试卷附答案》由会员分享,可在线阅读,更多相关《第八届《希望杯》全国数学邀请赛四年级(第2试)试卷附答案(11页珍藏版)》请在七七文库上搜索。
1、第八届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每小题5分,共60分)1(5分)王云在计算3255时先算了减法,结果得出1500,那么这道题的正确结果应该是 2(5分)今天(2010年4月11日)是星期日,则2010年的六一儿童节是星期 3(5分)今年,玲玲8岁,奶奶60岁,再过 年,奶奶的年龄是玲玲的5倍4(5分)算式11+1111+111111+111111(2010个1)111111(2010个1)的结果的末三位数字是 5(5分)将一个长6厘米,宽5厘米,高4厘米的长方体的表面刷上红漆,然后将这个长方体切割成棱长为1厘米的小正方体,则任何一面都没有被刷漆的小正方体有 个
2、6(5分)有四个自然数,它们的和是243如果将第一个数加上8,第二数减去8,第三个数乘以8,第四个数除以8,则得到的四个数相等那么,原来的四个数中最大数与最小数的乘积是 7(5分)如图,长9厘米,宽8厘米的长方形的中间有一个由两个长方形构成的十字形的阴影如果阴影部分的面积恰好等于空白部分的面积,那么X 厘米8(5分)如图,一个边长为50米的正方形围墙,甲乙两人分别从A、C两点同时出发,沿围墙按顺时针方向运动,已知甲每秒走5米,乙每秒走3米,则至少经过 秒甲乙走到正方形的同一条边上9(5分)甲、乙、丙三人进行万米赛跑,甲是最后一个起跑的,在整个比赛过程中,甲与乙、丙的位置共交换了9次,则比赛的结
3、果甲是第 名10(5分)有下列说法:(1)一个钝角减去一个直角,得到的角一定是锐角(2)一个钝角减去一个锐角,得到的角不可能还是钝角(3)三角形的三个内角中至多有一个钝角(4)三角形的三个内角中至少有两个锐角(5)三角形的三个内角可以都是锐角(6)直角三角形中可能有钝角(7)25的角用10倍的放大镜看就变成了250其中,正确说法的个数是 11(5分)如图,周长为52厘米的“L”形纸片可沿虚线分成两个完全相同的长方形如果最长的边长是16厘米,那么该“L”形纸片的面积是 平方厘米12(5分)48名学生参加聚会,第一个到会的男生和全部女生握手,第二个到会的男生只差一名女生没握过手,第三个到会的男生只
4、差2名女生没握过手最后一个到会的男生同9名女生握过手,这48名学生中共有 名女生二、解答题(每小题15分,共60分)每题都要写出推算过程13(15分)如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?14(15分)某场足球比赛赛前售出甲、乙、丙三类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙类、丙类门票张数相同则三种票各售出多少张?15(15分)甲、乙两辆车从A城开往B城,速度都是55千米/小时上午10点,甲车已行驶的路程是乙车已行驶路程的5倍;中午12点,甲车已行驶的路程是乙车已行驶路程的
5、3倍问乙车比甲车晚出发多少小时?16(15分)小红从家步行去学校,如果每分钟走120米,那么将比预定时间早到5分钟;如果每分钟走90米,则比预定时间迟到3分钟,那么小红家离学校有多远?参考答案解析一、填空题(每小题5分,共60分)1(5分)王云在计算3255时先算了减法,结果得出1500,那么这道题的正确结果应该是200【分析】这是一道“倒推法”的题型,从后往前解因为先算了减法,原式变成了(325)51500,所以32515005300,32530025,由此知道小方框代表的数字是25,325255200【解答】解:325(32515005)5,325255,200故答案为:2002(5分)今
6、天(2010年4月11日)是星期日,则2010年的六一儿童节是星期二【分析】先求出从4月11日到6月1日有多少天,再用经过的天数除以7求出经过了几周,还余几天,再根据余数判断【解答】解:4月11日到4月30日经过了:301119(天);5月份有31天,那么一共经过了:19+31+151(天);5177(周)2(天);余数是2,那么6月1日就是星期二;故答案为:二3(5分)今年,玲玲8岁,奶奶60岁,再过5年,奶奶的年龄是玲玲的5倍【分析】本题可列方程解答,设再过x年,奶奶的年龄是玲玲的5倍,则5年后玲玲的年龄是8+x岁,奶奶的年龄60+x岁,是由此可得等量关系式:(8+x)560+x解此方程即
7、可【解答】解:设再过x年,奶奶的年龄是玲玲的5倍,由此可得:(8+x)560+x40+5x60+x,4x20,x5故答案为:54(5分)算式11+1111+111111+111111(2010个1)111111(2010个1)的结果的末三位数字是690【分析】此题看似很难,我们可从式中第一个乘法算式开始计算一下每个乘法算式的值找下规律:111,1111121,11111112321,111111111234321,1111111111123454321,它们的积分别为:1,121,12321,1234321,123454321,12345654321,由此可以发现,除了头两个乘法算式的积分别为
8、1,121外,后边乘法算式的积的后三位都为321,据此规律我们就能求出这个算式的末三位的数字是多少了【解答】解:通过计算,可得每个乘法算式的积分别为:1,121,12321,1234321,123454321,12345654321,由此可以发现,除了头两个乘法算式的积分别为1,121外,后边乘法算式的积的后三位都为321;则式中每个算式末三位相加的和为:1+121+321(20102)122+64568,644690所以算式11+1111+111111+111111(2010个1)111111(2010个1)的结果的末三位数字是690故答案为:6905(5分)将一个长6厘米,宽5厘米,高4厘
9、米的长方体的表面刷上红漆,然后将这个长方体切割成棱长为1厘米的小正方体,则任何一面都没有被刷漆的小正方体有24个【分析】根据长方体切拼正方体的特点可知:表面没有刷红漆的小正方体都在这个长方体的内部,所以这些没有刷漆的棱长为1厘米小正方体体积为:(长2)(宽2)(高2);由此代入数据即可解决问题【解答】解:(62)(52)(42)(111),4321,24(个),答:则任何一面都没有被刷漆的小正方体有24个故答案为:246(5分)有四个自然数,它们的和是243如果将第一个数加上8,第二数减去8,第三个数乘以8,第四个数除以8,则得到的四个数相等那么,原来的四个数中最大数与最小数的乘积是576【分
10、析】根据题干,此题可以设当变化以后四个数字相等时为x,则由此逆推即可得出原来的四个数字分别是:x8、x+8、x8、x8,根据它们的和是243即可列出方程求得x的值后即可求得这四个自然数,从而解决问题【解答】解:设当变化以后四个数字相等时为x,则原来的四个数字分别是:x8、x+8、x8、x8,根据题意得:x8+x+8+x8+x8243, 10x+243, 81x1944, x24,所以这四个自然数分别是:24816,24+832,2483,248192,原来的四个数中最大数与最小数的乘积是:3192576,答:原来的四个数中最大数与最小数的乘积是576故答案为:5767(5分)如图,长9厘米,宽
11、8厘米的长方形的中间有一个由两个长方形构成的十字形的阴影如果阴影部分的面积恰好等于空白部分的面积,那么X2厘米【分析】根据图可知,阴影部分的面积为3乘8加9乘x再减去重叠部分3x,空白部分的面积为9减3再乘8减x的差,因为阴影部分的面积等于空白部分的面积,各占整个面积的一半,所以列方程解答即可【解答】解:38+9x3x980.5, 24+6x36, 6x3624, x2,故答案为:28(5分)如图,一个边长为50米的正方形围墙,甲乙两人分别从A、C两点同时出发,沿围墙按顺时针方向运动,已知甲每秒走5米,乙每秒走3米,则至少经过30秒甲乙走到正方形的同一条边上【分析】甲在A处,乙在B处,甲乙相距
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 希望杯 第八 希望 全国 数学 邀请赛 四年级 试卷 答案
链接地址:https://www.77wenku.com/p-251737.html