2024年上海市嘉定区中考二模数学试卷(含答案解析)
《2024年上海市嘉定区中考二模数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2024年上海市嘉定区中考二模数学试卷(含答案解析)(26页珍藏版)》请在七七文库上搜索。
1、2024年上海市嘉定区中考二模数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1. 下列实数中,属于有理数的是( )A. B. C. D. 2. 关于的方程(为常数)有两个不相等的实数根,那么的取值范围是( )A. 且B. C. 且D. 3. 如果将抛物线向下平移个单位,那么平移后抛物线与轴交点坐标是( )A. B. C. D. 4. 已知一组数据、,如果这组数据中的每一个数都减去常数,得到新的一组数据,那么下列描述这组新数据的信息中正确的是( )A. 平均数改变,方差不变;B. 平均数改变,方差改变;C. 平均数不变,方差不变;D. 平均数不变,方差改变5. 下列命题正确的是( )
2、A. 对角线相等的平行四边形是正方形;B. 对角线相等的四边形是矩形;C. 对角线互相垂直的四边形是菱形;D. 对角线相等的梯形是等腰梯形6. 在中, ,以点为圆心,半径为的圆记作圆,那么下列说法正确的是( )A. 点在圆外,点在圆上;B. 点在圆上,点B在圆内;C. 点在圆外,点在圆内;D. 点、都在圆外二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 4的平方根是_8 计算:_9. 随着某产品制造技术的不断发展,某地区用于这个技术开发的资金约为元,这个数字用科学记数法表示为_10. 不等式的最小整数解是_11. 用换元法解方程时,如果设,那么原方
3、程可化为关于整式方程是_12. 已知反比例函数的图像经过点,则k的值为_13. 某校田径运动队共有名男运动员,小杰收集了这些运动员的鞋号信息(见表),鞋号号号号号号号人数那么这名男运动员鞋号的中位数是_14. 在不透明的盒子中装有六张形状相同的卡片,这六张卡片分别印有正方形、平行四边形、等边三角形、直角梯形、正六边形、圆等六种图形,如果从这不透明的盒子里随机抽出一张卡片,那么所抽到的这张卡片上的图形恰好为中心对称图形的概率是_15. 如图,在中,线段是边上的中线,点是的中点,设向量,那么向量_(结果用、表示) 16. 如图在正方形的外侧作一个,已知,那么等于_17. 如图在圆O中,是直径,弦与
4、交于点,如果,点是中点,连接,并延长与圆交于点,那么_18. 定义:如果三角形有两个内角的差为,那么这样的三角形叫做准直角三角形已知在直角中,如图4,如果点在边上,且是准直角三角形,那么_三、解答题:(本大题共7题,满分78分)19. 计算: 20. 解方程组:21. 某东西方向的海岸线上有、两个码头,这两个码头相距千米(),有一艘船在这两个码头附近航行 (1)当船航行了某一刻时,由码头测得船在北偏东,由码头测得船在北偏西,如图,求码头与船的距离(的长),其结果保留位有效数字;(参考数据,)(2)当船继续航行了一段时间时,由码头测得船在北偏东,由码头测得船在北偏西,船到海岸线的距离是(即),如
5、图,求的长,其结果保留根号22. 某企业在2022年1至3月的利润情况见表月份数()123利润数()(万元)96?100(1)如果这个企业在2022年1至3月的利润数是月份数的一次函数,求2月份的利润;(2)这个企业从3月份起,通过技术改革,经过两个月后的5月份获得利润为121万元,如果这个企业3月至5月中每月利润数的增长率相等,求这个企业3月至5月中利润数的月平均增长率23. 如图,在梯形中,点在四边形内部,连接、(1)求证:是等腰三角形;(2)已知点在上,连接,如果,求证:四边形是平行四边形24. 在平面直角坐标系(如图)中,已知抛物线经过点、两点,与轴交点为点,对称轴为直线(1)求此抛物
6、线的表达式;(2)已知以点为圆心,半径为的圆记作圆,以点A为圆心的圆记作圆A,如果圆A与圆外切,试判断对称轴直线与圆A的位置关系,请说明理由;(3)已知点在轴的正半轴上,且在点的上方,如果,请求出点的坐标25. 在菱形中,点在射线上,连接、(1)如图,当点是边的中点,求的正切值;(2)如图,当点在线段的延长线上,连接与边交于点,如果,的面积等于,求的长;(3)当点在边上,与交于点,连接并延长与的延长线交于点,如果,与以点、所组成的三角形相似,求的长2024年上海市嘉定区中考二模数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1. 下列实数中,属于有理数的是( )A. B. C. D.
7、 【答案】C【解析】【分析】本题考查有理数的定义,掌握有理数的定义是解题的关键根据有理数定义依次判断即可【详解】解:A、是无理数,故本选项不符合题意;B、是无理数,故本选项不符合题意;C、是分数,是有理数,本选项符合题意;D、是无理数,故本选项不符合题意故选:C2. 关于的方程(为常数)有两个不相等的实数根,那么的取值范围是( )A. 且B. C. 且D. 【答案】B【解析】【分析】本题考查了一元二次方程()的根的判别式当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根根据一元二次方程的根的判别式的意义得到,解不等式即可【详解】解:关于的方程(为常数)有两个不相等的实
8、数根,即,解得,k的取值范围为故选:B3. 如果将抛物线向下平移个单位,那么平移后抛物线与轴的交点坐标是( )A. B. C. D. 【答案】B【解析】【分析】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减根据“左加右减、上加下减”的原则写出新抛物线解析式,然后令,通过解解方程求解【详解】解:把抛物线的图象向下平移2个单位,则平移后的抛物线的表达式为,令,则所以所得抛物线与y轴的交点的坐标为故选B4. 已知一组数据、,如果这组数据中每一个数都减去常数,得到新的一组数据,那么下列描述这组新数据的信息中正确的是( )A. 平均数改变,方差不变;B. 平均数改变,方
9、差改变;C. 平均数不变,方差不变;D. 平均数不变,方差改变【答案】A【解析】【分析】本题考查了方差和平均数,一般地设个数据,的平均数为,则方差,掌握平均数和方差的特点是本题的关键根据平均数和方差的特点,一组数都加上或减去同一个不等于0的常数后,方差不变,平均数改变,即可得出答案【详解】解:记原先平均数为,新的平均数为,则,所以平均数改变;记原先方差为,则,则新的方差,而,代入得,平均数改变,方差不变,故选:A5. 下列命题正确的是( )A. 对角线相等的平行四边形是正方形;B. 对角线相等的四边形是矩形;C. 对角线互相垂直的四边形是菱形;D. 对角线相等的梯形是等腰梯形【答案】D【解析】
10、【分析】本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,利用特殊的四边形的判定和性质定理逐一判断后即可确定正确的选项【详解】解:A、对角线相等的平行四边形是矩形,命题错误,不符合题意;B、对角线相等的四边形是等腰梯形或矩形,命题错误,不符合题意;C、对角线互相垂直的四边形是菱形或等腰梯形,命题错误,不符合题意;D、对角线相等的梯形是等腰梯形,命题正确,符合题意故选:D6. 在中, ,以点为圆心,半径为的圆记作圆,那么下列说法正确的是( )A. 点在圆外,点在圆上;B. 点在圆上,点B在圆内;C. 点在圆外,点在圆内;D. 点、都在圆外【答案】C【解析】【分析】本题考查了解直
11、角三角形,点与圆的位置关系,等腰三角形的性质,掌握解直角三角形和会判断点与圆的位置关系是解决问题的关键由解直角三角形求出,由等腰三角形的性质求出,即可判断出点B和点A与的位置关系,即可得出答案【详解】解:如图,过点A作于点D,如图所示:,的半径为6,点在圆外,点在圆内;故选:C二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 4的平方根是_【答案】2【解析】【详解】解:,4的平方根是2故答案28. 计算:_【答案】【解析】【分析】本题考查的是多项式乘多项式的运算法则第一个整式的每一项与另一个整式的每一项相乘再相加即可熟练掌握多项式乘多项式的运算方法是
12、解决此题的关键【详解】解:故答案为:9. 随着某产品制造技术的不断发展,某地区用于这个技术开发的资金约为元,这个数字用科学记数法表示为_【答案】【解析】【分析】本题考查了科学记数法的表示方法,解题的关键是正确表示和的值由科学记数法的表示方法,表示出和的值,得到答案【详解】10. 不等式的最小整数解是_【答案】5【解析】【分析】本题主要查了求一元一次不等式的整数解求出不等式的解集,即可求解【详解】解:,解得:,不等式的最小整数解是5故答案为:511. 用换元法解方程时,如果设,那么原方程可化为关于的整式方程是_【答案】【解析】【分析】此题主要考查了换元法解分式方程,设,则方程可转化为:,然后再去
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 上海市 嘉定区 中考 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-256420.html