2016-2017学年天津市南开区高一(上)期末数学试卷(含答案解析)
《2016-2017学年天津市南开区高一(上)期末数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2016-2017学年天津市南开区高一(上)期末数学试卷(含答案解析)(15页珍藏版)》请在七七文库上搜索。
1、2016-2017 学年天津市南开区高一(上)期末数学试卷一、选择题:本大题共 10 小题,每小题 3 分,共 30 分在每小题给出的四个选项中,只有一个是符合题目要求的1 (3 分)设集合 U=n|nN*且 n9,A=2,5,B=1,2,4,5,则U(AB)中元素个数为( )A4 B5 C6 D72 (3 分)与 = +2k(k Z)终边相同的角是( )A345 B375 C D 3 (3 分)sin80cos70+sin10sin70=( )A B C D4 (3 分)下列函数中是奇函数的是( )Ay=x+sinx By=|x |cosx Cy=xsinx Dy=|x|cosx5 (3 分
2、)已知 cos0, tan(+ )= ,则 在( )A第一象限 B第二象限 C第三象限 D第四象限6 (3 分)函数 f(x )=log 2x+x4 的零点在区间为( )A (0 ,1 ) B (1,2) C (2,3) D (3,4)7 (3 分)若偶函数 f(x)在0,+)上单调递减,设 a=f(1) ,b=f(log 0.53) ,c=f( log231) ,则( )Aa b c Bbac Cb c a Dcab8 (3 分)如图,正方形 ABCD 边长为 1,从某时刻起,将线段AB,BC,CD,DA 分别绕点 A,B,C,D 顺时针旋转相同角度 (0 ) ,若旋转后的四条线段所围成的封
3、闭图形面积为 ,则 =( )A 或 B 或 C 或 D 或9 (3 分)函数 f(x )=Asin(x+)的单调递减区间为k ,k+ (kZ ) ,则下列说法错误的是( )A函数 f( x)的最小正周期为 B函数 f(x)图象的对称轴方程为 x= + (k Z)C函数 f(x )图象的对称中心为( + ,0) (k Z)D函数 f(x)的单调递减区间为k+ ,k + (k Z)10 (3 分)设函数 f(x ) = ,则下列说法正确的是( )若 a0,则 f(f(a) ) =a;若 f( f(a) )= a,则 a0;若 a1,则 f(f(a) ) = ;若 f( f(a) )= ,则 a1A
4、 B C D二、填空题:本大题共 5 小题,每小题 4 分,共 20 分).11 (4 分)函数 f(x )= 的定义域为 12 (4 分)函数 f(x )=2cos 2xtanx+cos2x 的最小正周期为 ;最大值为 13 (4 分)如果将函数 f(x )=sin2x 图象向左平移 (0)个单位,函数g( x)=cos(2x )图象向右平移 个长度单位后,二者能够完全重合,则 的最小值为 14 (4 分)如图所示,已知 A,B 是单位圆上两点且|AB|= ,设 AB 与 x 轴正半轴交于点 C,=AOC,=OCB ,则 sinsin+coscos= 15 (4 分)设函数 f(x ) =
5、,若关于 x 的方程 f(x)a=0有三个不等实根 x1,x 2,x 3,且 x1+x2+x3= ,则 a= 三、解答题:本大题共 5 小题,共 50 分解答写出文字说明、证明过程或演算过程16 (8 分)已知集合 A=x|2x62 2x1,B=x|xAN,C=x |axa +1()写出集合 B 的所有子集;()若 AC=C,求实数 a 的取值范围17 (10 分)已知函数 f( x)=cos(x )sin(x ) ()判断函数 f(x)的奇偶性,并给出证明;()若 为第一象限角,且 f(+ )= ,求 cos(2 + )的值18 (10 分)设函数 f(x)为 R 上的奇函数,已知当 x0
6、时,f (x)=(x+1)2()求函数 f(x)的解析式;()若 f(m 2+2m)+f(m)0,求 m 的取值范围19 (10 分)设某等腰三角形的底角为 ,顶角为 ,且 cos= ()求 sin 的值;()若函数 f(x)=tanx 在 , 上的值域与函数 g(x )=2sin (2x )在0,m上的值域相同,求 m 的取值范围20 (12 分)函数 f(x)=4sinxcos(x+ )+1(0) ,其图象上有两点A(s ,t ) ,B(s+2,t) ,其中 2t2,线段 AB 与函数图象有五个交点()求 的值;()若函数 f(x)在x 1,x 2和x 3,x 4上单调递增,在x 2,x
7、3上单调递减,且满足等式 x4x3=x2x1= ( x3x2) ,求 x1、x 4 所有可能取值2016-2017 学年天津市南开区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共 10 小题,每小题 3 分,共 30 分在每小题给出的四个选项中,只有一个是符合题目要求的1 (3 分)设集合 U=n|nN*且 n9,A=2,5,B=1,2,4,5,则U(AB)中元素个数为( )A4 B5 C6 D7【解答】解:A=2,5,B=1,2,4,5,AB=1,2,4,5,又集合 U=n|nN*且 n9= 1,2,3,4,5,6,7,8,9, U(AB) =3,6,7 ,8,9,故 U(AB
8、)共有 5 个元素,故选:B2 (3 分)与 = +2k(k Z)终边相同的角是( )A345 B375 C D 【解答】解:由 = +2k(k Z) ,得与角 终边相同的角是: ,360+15=375故选:B3 (3 分)sin80cos70+sin10sin70=( )A B C D【解答】解:sin80cos70 +sin10sin70=cos10cos70+sin10sin70= 故选:C4 (3 分)下列函数中是奇函数的是( )Ay=x+sinx By=|x |cosx Cy=xsinx Dy=|x|cosx【解答】解:A,y=x +sinx,有 f( x)=xsinx= f(x)
9、,为奇函数;B,y= |x|cosx,f (x)= |x|cos(x)=f(x) ,为偶函数;C, y=xsinx,f (x)= (x) sin(x)=xsinx=f (x) ,为偶函数;D,y=|x|cosx,f(x)=| x|cos(x)=f(x) ,为偶函数故选:A5 (3 分)已知 cos0, tan(+ )= ,则 在( )A第一象限 B第二象限 C第三象限 D第四象限【解答】解:由题意得,tan(+ )= ,所以 = ,即 ,解得 tan= 0,则 在第二或四象限,由 cos0 得, 在第一或四象限,所以 在第四象限,故选:D6 (3 分)函数 f(x )=log 2x+x4 的零
10、点在区间为( )A (0 ,1 ) B (1,2) C (2,3) D (3,4)【解答】解:f(x)=log 2x+x4,在(0,+)上单调递增f( 2)=1+24=10,f (3)=log 2310根据函数的零点存在性定理得出:f(x )的零点在(2,3)区间内函数 f(x )=log 2x+x4 的零点所在的区间为(2,3) ,故选:C7 (3 分)若偶函数 f(x)在0,+)上单调递减,设 a=f(1) ,b=f(log 0.53) ,c=f( log231) ,则( )Aa b c Bbac Cb c a Dcab【解答】解:偶函数 f(x )在0,+)上单调递减,f( x)在(,0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 2017 学年 天津市 南开区 高一上 期末 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-29284.html