人教版数学九年级上24.2.2直线和圆的位置关系(第3课时)课件
《人教版数学九年级上24.2.2直线和圆的位置关系(第3课时)课件》由会员分享,可在线阅读,更多相关《人教版数学九年级上24.2.2直线和圆的位置关系(第3课时)课件(25页珍藏版)》请在七七文库上搜索。
1、24.2.2 直线和圆的位置关系 第3课时,1.理解切线长的概念,掌握切线长定理 2.学会运用切线长定理解有关问题 3通过对例题的分析,培养学生分析总结问题的习 惯,提高学生综合运用知识解题的能力,培养数形结 合的思想,1、如何过O外一点P画出O的切线?,2、这样的切线能画出几条?,如下左图,借助三角板,我们可以画出PA是O的切线.,3、如果P=50,求AOB的度数.,50,130,O,A,B,P,思考:已画出切线PA、PB,A、B为切点,则OAP= 90,连接OP,可知A、B 除了在O上,还在怎样的圆上?,如何用圆规和直尺 作出这两条 切线呢?,.,尺规作图:过O外一点作O的切线,O,P,A
2、,B,O,在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长.,O,P,A,B,切线与切线长是一回事吗?它们有什么区别与联系呢?,切线和切线长是两个不同的概念:1、切线是一条与圆相切的直线,不能度量;2、切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.,O,A,B,P,1,2,思考:已知O切线PA、PB,A、B为切点,把圆沿着直线OP对折,你能发现什么?,请证明你所发现的结论.,PA = PB,OPA=OPB,证明:PA,PB与O相切,点A,B是切点OAPA,OBPB 即OAP=OBP=90 OA=OB,OP=OPRtAOPRtBOP(HL) PA =
3、PB OPA=OPB,切线长定理,PA、PB分别切O于A、B,PA=PB,OP平分APB.,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.,几何语言:,反思:切线长定理为证明线段相等、角相等提供新的方法,PA = PB,OPA=OPB,A,P,O,B,若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.,OP垂直平分AB,证明:PA,PB是O的切线,点A,B是切点,PA = PB,OPA=OPB.PAB是等腰三角形,PM为顶角的平分线.OP垂直平分AB.,A,P,O,.,B,若延长PO交O于点C,连结CA、CB,你又能得出什么新的结论?
4、并给出证明.,CA=CB,证明:PA,PB是O的切线,点A,B是切点,PA = PB ,OPA=OPB.PC=PC. PCA PCB ,AC=BC.,C,.,P,B,A,O,(3)连结圆心和圆外一点,(2)连结两切点,(1)分别连结圆心和切点,反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形.,探究:PA、PB是O的两条切线,A、B为切点,直线OP交O于点D、E,交AB于点C.,B,A,P,O,C,E,(1)写出图中所有的垂直关系,OAPA,OB PB ABOP,(2)写出图中与OAC相等的角,OAC=OBC=APC=BPC,D,AOP BOP, AOC BOC, ACP BCP,(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 九年级 24.2
链接地址:https://www.77wenku.com/p-30651.html