2019版河北省中考数学一轮复习《课题16:利用二次函数解决实际问题》课件
《2019版河北省中考数学一轮复习《课题16:利用二次函数解决实际问题》课件》由会员分享,可在线阅读,更多相关《2019版河北省中考数学一轮复习《课题16:利用二次函数解决实际问题》课件(32页珍藏版)》请在七七文库上搜索。
1、课题16 利用二次函数解决实际问题,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 利用二次函数解决抛物线型问题 某些建筑的外形或物体的运动路线(如拱形桥、抛出去的铅球的运行轨迹) 等,可看做抛物线的一部分,因此可通过建立 适当 的直角坐标系,把这 些建筑的外形或物体的运动路线转化为 二次 函数的图象,然后利用二 次函数的有关知识解决这个实际问题.,基础知识梳理,考点二 利用二次函数解决“最大(或最小)值”问题 利用二次函数解决实际问题中的最大(或最小)值问题时,应先利用图形周 长、 面积 等计算公式或有关各量之间的 数量关系 ,得到与之相 关的二次函数关系式,然后通过求二次函
2、数的最大(或最小)值,使实际问题得 到解决.,题型一 考查利用二次函数解决抛物线型问题 该题型主要考查利用二次函数解决抛物线型问题,包括怎样根据抛物线中的 信息确定二次函数表达式、当图中没有直角坐标系时怎样建立适当的直角 坐标系等.,中考题型突破,典例1 (2017山东德州中考)随着新农村的建设和旧城的改造,我们的家园越 来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装 了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离 为1米处达到最高,水柱落地处离池中心3米. (1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度.
3、,答案 (1)以水管与地面交点O为原点,点O与水柱落地点A所在直线为x轴,水 管所在直线为y轴,建立平面直角坐标系,如图所示.设喷水点为B,水柱的最高点为C,过点C作x轴的垂线交x轴于点D,则点O(0,0), A(3,0),B(0,2),D(1,0),直线CD为抛物线形水柱的对称轴. 设抛物线的解析式为y=a(x-1)2+h(a0),把点A(3,0),B(0,2)的坐标代入,得 解得 抛物线的解析式为y=- (x-1)2+ =- x2+ x+2(0x3). (2)抛物线的解析式为y=- (x-1)2+ ,x的取值范围为0x3, 水柱的最大高度为 m.,变式训练1 (2017唐山模拟)如图,拱门
4、的地面宽度为200米,两侧距地面高15 0米处各有一个观光窗,两窗的水平距离为100米,则拱门的最大高度为 ( C )A.100米 B.150米 C.200米 D.300米,答案 C 以CD所在的直线为x轴,CD的垂直平分线为y轴建立平面直角坐标 系,则抛物线与x轴的交点为C(-100,0),D(100,0)的坐标,设这条抛物线的解析 式为y=ax2+h(a0),把点B(50,150),D(100,0)代入,得 解得y=- x2+200, 拱门的最大高度为200米.,题型二 考查利用二次函数解决最大(小)值问题 该题型主要考查利用二次函数解决最大(小)值问题,如图形的最大面积、图 形的最小周长
5、、销售问题中的最大利润等,解决这类问题时,先确定与之有关 的二次函数表达式,从而把问题转化为求二次函数的最大(小)值问题.,典例2 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x9 0)天的售价与销量的相关信息如下表:,已知该商品的进价为每件30元,设销售该商品每天的利润为y元. (1)求出y与x的函数关系式; (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?,答案 (1)当1x50时, y=(200-2x)(x+40-30)=-2x2+180x+2 000; 当50x90时, y=(200-2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 河北省 中考 数学 一轮 复习 课题 16 利用 二次 函数 解决 实际问题 课件
链接地址:https://www.77wenku.com/p-33287.html