2019年山东省德州市中考数学题型专题复习课件:题型4
《2019年山东省德州市中考数学题型专题复习课件:题型4》由会员分享,可在线阅读,更多相关《2019年山东省德州市中考数学题型专题复习课件:题型4(20页珍藏版)》请在七七文库上搜索。
1、,题型4 实际应用问题,类型函数实际应用问题,例12018衢州某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系 (1)求水柱所在抛物线(第一象限部分)的函数表达式; (2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内? (3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍
2、在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度,规范解答:(1)设水柱所在抛物线(第一象限部分)的函数表达式为 ya(x3)25(a0),(2分) 将(8,0)代入 ya(x3)25,得25a50, 解得a , 水柱所在抛物线(第一象限部分)的函数表达式为y (x3)25(0x8)(8分),(2)当y1.8时, (x3)251.8, 解得x11(舍去),x27, 为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心 7米以内(10分),(3)当x0时,y (x3)25 . 设改造后水柱所在抛物线(第一象限部分)的函数表达式为 y x2bx (12分) 该
3、函数图象过点(16,0), 0 16216b ,解得b3, 改造后水柱所在抛物线(第一象限部分)的函数表达式为y x23x (x )2 . 扩建改造后喷水池水柱的最大高度为 米(15分),满分技法(1)二次函数的实际应用问题大致有这么几类:一、面积类,运用面积公式表示关系式;二、销售利润类,利用总利润单位利润数量这个公式表示关系式;三、求实际问题中的二次函数解析式类,合理建立坐标系可以使得问题简单;四、与一次函数图象结合类等,根据函数图象提供的信息建立关式(2)实际问题必须考虑自变量的取值是否满足实际要求,【满分必练】,12018淮安某景区商店销售一种纪念品,每件的进货价为 40 元经市场调研
4、, 当该纪念品每件的销售价为 50 元时,每天可销售 200 件;当每件的销售价每增加1元,每天的销售数量将减少 10 件 (1)当每件的销售价为 52 元时,该纪念品每天的销售数量为_件; (2)当每件的销售价x (元)为多少时,销售该纪念品每天获得的利润 y (元) 最大?并求出最大利润,解:(1)180.,(2)y(x40)20010(x50)(x40)(70010x)10x21100x28000. 100, 当x 55时,y有最大值,y最大值为2250. 答:当每件的销售价为55元时,销售该纪念品每天获得的利润最大,最大利润为2250元,22018滨州 如图,一小球沿与地面成一定角度的
5、方向飞出,小球的飞行路线是一条抛物线如果不考虑空气阻力,小球的飞行高度 y(单位:m)与飞行时间 x(单位:s)之间具有函数关系y5x220x,请根据要求解答下列问题: (1)在飞行过程中,当小球的飞行高度为15m时,飞行的时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?,解:(1)当y15时,5x220x 15, 化简,得x24x30,即(x1)(x3)0, 故x1或3, 即当小球的飞行高度为15m时,飞行时间是1秒或者3秒,(2)飞出和落地的瞬间,高度都为0, 所以有05x220x,解得x0或4, 所以,从飞出到
6、落地所用时间是4秒,(3)y5x220x5(x2)220, 当x2时,y取得最大值,此时y20, 所以当x2时,小球的飞行高度最大,最大高度为20米,32017福建如图,一个矩形菜园ABCD,一边AD靠墙(墙MN长为a米,MNAD),另外三边用总长100米的不锈钢栅栏围成 (1)当前a20米时,矩形ABCD的面积为450平方米,求AD长; (2)求矩形ABCD面积的最大值,解:(1)设ADx米, 则BCx米,ABCD (100x) (50 x)米, 依题意,有x(50 x)450, 整理,得x2100x9000,解得x90或x10. MNa20,MNAD, x9020不合题意,舍去, x10,
7、即AD长为10米,(2)设AD y,则ABCD(50 y)米, 满足 解得0y100. 设矩形ABCD的面积为S,则 S y(50 y) y250y ( y50)21250, 若a50,则当 y50时,S最大1250; 若当0a50,则当0ya时,S随y的增大而增大, 故当ya时,S最大50a a2. 综上所述,当a50时,矩形菜园ACBD的面积的最大值是1250平方米 当0a50时,矩形菜园ABCD的面积的最大值是(50a a2)平方米,42018黔西南州某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
8、(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益售价成本) (2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由; (3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?,解:(1)当x6时, y13,y21, y1y2312, 6月份出售这种蔬菜每千克的收 益是2元,(2)设 y1mxn,y2a(x6)21. 将(3,5),(6,3)代入 y1mxn,得 解得 y1 x7. 将(3,4)代入 y2a(x6)21, 4a(36)21,解得a , y2 (x6)21 x24x13
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 山东省 德州市 中考 数学 题型 专题 复习 课件
链接地址:https://www.77wenku.com/p-34465.html