《21.2.3《因式分解法》课件》由会员分享,可在线阅读,更多相关《21.2.3《因式分解法》课件(19页珍藏版)》请在七七文库上搜索。
1、第21章:一元二次方程,人教版九年级上册,21.2 解一元二次方程,21.2.3 因式分解法,1.我们已经学过了几种解一元二次方程的方法?,2.什么叫分解因式?,把一个多项式分解成几个整式乘积的形式叫做分解因式.,直接开平方法,配方法,x2=a (a0),(x+m)2=n (n0),公式法,一、知识回顾,了解分解因式法解一元二次方程的概念,并会用分解因式法解某些一元二次方程.,二、目标展示:,认真思考下面大屏幕出示的问题,列出一元二次方程并尽可能用多种方法求解.,三、导入新课,自学指导,你能解决这个问题吗,一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?,小颖,
2、小明,小亮都设这个数为x,根据题意得,小颖做得对吗?,小明做得对吗?,小颖,小明,小亮都设这个数为x,根据题意得,小亮做得对吗?,分解因式法,当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法.,老师提示: 1.用分解因式法的条件是:方程左边易于分解,而右边等于零; 2. 关键是熟练掌握因式分解的知识; 3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”,自学P12-14两个例题,注意方程各自 的特点,自学后比一比谁能灵活运用分解因法解相关方程.2. 思考“归纳”中提出的问题,灵活
3、运用合适方法解一元二次方程.,用分解因式法解方程: (1)5x2=4x;(2)x-2=x(x-2).,分解因式法解一元二次方程的步骤是:,2. 将方程左边因式分解;,3. 根据“至少有一个因式为零”,转化为两个一元一次方程.,4. 分别解两个一元一次方程,它们的根就是原方程的根.,1.化方程为一般形式;,四、新课讲解:,1 .x2-4=0; 2.(x+1)2-25=0.,解:1.(x+2)(x-2)=0,x+2=0,或x-2=0.,x1=-2, x2=2.,淘金者,你能用分解因式法解下列方程吗?,2.(x+1)+5(x+1)-5=0,x+6=0,或x-4=0.,x1=-6, x2=4.,这种解
4、法是不是解这两个方程的最好方法? 你是否还有其它方法来解?,1.解下列方程:,五、课堂练习:,解:设这个数为x,根据题意,得,x=0,或2x-7=0.,2x2=7x.,2x2-7x=0,x(2x-7) =0,一个数平方的2倍等于这个数的7倍,求这个数.,我最棒 ,用分解因式法解下列方程,参考答案:,1. ;,2. ;,4. ;,我们已经学过一些特殊的二次三项式的分解因式,如:,二次三项式 ax2+bx+c 的因式分解,但对于一般的二次三项式ax2+bx+c(ao),怎么把它分解因式呢?,观察下列各式,也许你能发现些什么,一般地,要在实数范围 内分解二次三项式ax2+bx+c(ao),只要用公式
5、法求出相应的一元二次方程ax2+bx+c=0(ao),的两个根x1,x2,然后直接将ax2+bx+c写成a(x-x1)(x-x2),就可以了.即ax2+bx+c= a(x-x1)(x-x2).,二次三项式 ax2+bx+c的因式分解,当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法. 分解因式法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.” 因式分解法解一元二次方程的步骤是: (1)化方程为一般形式; (2)将方程左边因式分解;(3)根据“至少有一个因式为零”,得到两个一元一次方程.(4)两个一元一次方程的根就是原方程的根. 因式分解的方法,突出了转化的思想方法“降次”,鲜明地显示了“二次”转化为“一次”的过程.,六、课堂小结与反思:,解下列方程,参考答案:,七、课堂检测:,1、P14练习1、2题2、P17习题21.2第6 题;祝你成功!,八、布置作业:,结束寄语,配方法和公式法是解一元二次方程重要方法,要作为一种基本技能来掌握.而某些方程可以用分解因式法简便快捷地求解.,
链接地址:https://www.77wenku.com/p-39094.html