《22.1.2《二次函数y=ax²的图象和性质》课件》由会员分享,可在线阅读,更多相关《22.1.2《二次函数y=ax²的图象和性质》课件(15页珍藏版)》请在七七文库上搜索。
1、第22章:二次函数,22.1 二次函数的图像和性质,22.1.2二次函数y=ax2的图象和性质,人教版九年级上册,学习目标:,1.会用描点法画二次函数y=ax的图象,经历探索二次函数 y=ax 的图象与性质的过程。2.掌握二次函数y=ax 的性质,并能运用其性质解决简单的实际问题,体会数形结合思想。,函数图象画法,列表,描点,连线,0,0.25,1,2.25,4,0.25,1,2.25,4,描点法,用光滑曲线连结时要 自左向右顺次连结,用光滑曲线连结时要 自左向右顺次连结,用光滑曲线连结时要 自左向右顺次连结,用光滑曲线连结时要 自左向右顺次连结,用光滑曲线连结时要 自左向右顺次连结,用光滑曲
2、线连结时要 自左向右顺次连结,用光滑曲线连结时要 自左向右顺次连结,用光滑曲线连结时要 自左向右顺次连结,用光滑曲线连结时要 自左向右顺次连结,0,-0.25,-1,-2.25,-4,-0.25,-1,-2.25,-4,注意:列表时自变量 取值要均匀和对称。,下面是两个同学画的 y=0.5x2 和 y=-0.5x2的图象,你认为他们的作图正确吗?为什么?,画出下列函数的图象。,0,0.5,2,4.5,8,0.5,2,4.5,8,列表参考,0,0.5,2,4.5,8,0.5,2,4.5,8,0,1.5,-6,1.5,-6,二次函数y=ax2的图象形如物体抛射时 所经过的路线,我们把它叫做抛物线。
3、,这条抛物线关于y轴 对称,y轴就是它的 对称轴。,这条抛物线关于y轴 对称,y轴就是它的 对称轴。,这条抛物线关于y轴 对称,y轴就是它的 对称轴。,对称轴与抛物线的交点 叫做抛物线的顶点。,对称轴与抛物线的交点 叫做抛物线的顶点。,对称轴与抛物线的交点 叫做抛物线的顶点。,1、观察右图, 并完成填空。,(0,0),(0,0),y轴,y轴,在x轴的上方(除顶点外),在x轴的下方(除顶点外),向上,向下,当x=0时,最小值为0。,当x=0时,最大值为0。,二次函数y=ax2的性质,、顶点坐标与对称轴,、位置与开口方向,、增减性与极值,2、练习2,3、想一想,在同一坐标系内,抛物线y=x2与抛物
4、线y= -x2的位置有什么关系? 如果在同一坐标系内画函数y=ax2与y= -ax2的图象,怎样画才简便?,4、练习4,动画演示,当a0时,在对称轴的 左侧,y随着x的增大而 减小。,当a0时,在对称轴的 右侧,y随着x的增大而 增大。,当a0时,在对称轴的 左侧,y随着x的增大而 增大。,当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且 向上无限伸展;当a0时,在对称轴的左侧,y随着x的增大而减小; 在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。 当a0时,在对称轴的左侧,y随着x的增大而增大; 在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值
5、最大。,2、根据左边已画好的函数图象填空: (1)抛物线y=2x2的顶点坐标是 , 对称轴是 ,在 侧, y随着x的增大而增大;在 侧, y随着x的增大而减小,当x= 时, 函数y的值最小,最小值是 ,抛物 线y=2x2在x轴的 方(除顶点外)。,(0,0),y轴,对称轴的右,对称轴的左,0,0,上,(2)抛物线 在x轴的 方(除顶点外),在对称轴的 左侧,y随着x的 ;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是 , 当x 0时,y0.,下,增大而增大,增大而减小,0,4、已知抛物线y=ax2经过点A(-2,-8)。(1)求此抛物线的函数解析式;(2)判断点B(-1,- 4)是否在此抛物线上。(3)求出此抛物线上纵坐标为-6的点的坐标。,解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解出a= -2, 所求函数解析式为y= -2x2.,(2)因为 , 所以点B(-1 ,-4) 不在此抛物线上。,(3)由-6=-2x2 ,得x2=3, 所以纵坐标为-6的点有两个,它们分别是,y=-2x2,
链接地址:https://www.77wenku.com/p-39101.html