1.3《勾股定理的应用》课件
《1.3《勾股定理的应用》课件》由会员分享,可在线阅读,更多相关《1.3《勾股定理的应用》课件(27页珍藏版)》请在七七文库上搜索。
1、1.3 勾股定理的应用,第一章 勾股定理,八年级数学北师版,情境引入,学习目标,1.学会运用勾股定理求立体图形中两点之间的最短距离(重点) 2.能够运用勾股定理解决实际生活中的问题. (重点,难点),在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?,C,B,A,AC+CBAB(两点之间线段最短),导入新课,情境引入,思考:在立体图形中,怎么寻找最短线路呢?,讲授新课,问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?,想一想: 蚂蚁走哪一条路线
2、最近?,A,蚂蚁AB的路线,若已知圆柱体高为12 cm,底面半径为3 cm, 取3,则:,侧面展开图,【方法归纳】立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.,A,A,例1 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米?(已知油罐的底面半径是2 m,高AB是5 m,取3),A,B,A,B,A,B,解:油罐的展开图如图,则AB为梯子的最短距离. AA=232=12, AB=5, AB=13. 即梯子最短需13米.,典例精析,数学思想:,立体图形,平面图形,转化,展开,变式1:当小蚂蚁爬到距离上
3、底3cm的点E时,小明同学拿饮料瓶的手一抖,那滴甜甜的饮料就顺着瓶子外壁滑到了距离下底3cm的点F处,小蚂蚁到达点F处的最短路程是多少?(取3),解:如图,可知ECF为直角三角形, 由勾股定理,得 EF2=EC2+CF2=82+(12-3-3)2=100, EF=10(cm).,B,牛奶盒,A,变式2:看到小蚂蚁终于喝到饮料的兴奋劲儿,小明又灵光乍现,拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?,6cm,8cm,10cm,B,B1,8,A,B2,6,10,B3,AB12 =102 +(6+8)2 =296,AB22= 82 +(10+
4、6)2 =320,AB32= 62 +(10+8)2 =360,问题:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺. (1)你能替他想办法完成任务吗?,解:连接对角线AC,只要分别量出AB、BC、AC的长度即可.,AB2+BC2=AC2,ABC为直角三角形,(2)量得AD长是30 cm,AB长是40 cm,BD长是50 cm. AD边垂直于AB边吗?,解:AD2+AB2=302+402=502=BD2,,得DAB=90,AD边垂直于AB边.,(3)若随身只有一个长度为20 cm的刻度尺,能有办法检验AD边是否垂直于AB边吗?,解:在AD上取点M,使AM=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.3 勾股定理 应用 课件
链接地址:https://www.77wenku.com/p-39677.html