北师大版八年级数学上册:第一章《勾股定理》教案
《北师大版八年级数学上册:第一章《勾股定理》教案》由会员分享,可在线阅读,更多相关《北师大版八年级数学上册:第一章《勾股定理》教案(9页珍藏版)》请在七七文库上搜索。
1、第一章 勾股定理1 探索勾股定理第 1 课时 勾股定理1用数格子(或割、补、拼等 )的方法体验勾股定理的探索过程 ,理解勾股定理反映的直角三角形三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用2让学生经历“观察猜想归纳验证”的数学过程,并体会数形结合和特殊到一般的思想方法3进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系4在探索勾股定理的过程中,体验获得成功的快乐通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想感情重点探索勾股定理难点在方格纸上通过计算面积的方法探索勾股定理一、情境导入课件出示:师:2002 年世界数学家大会
2、在我国北京召开,课件显示的是本届世界数学家大会的会标会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图案来作为与“外星人”联系的信号今天我们就来一同探索勾股定理(板书课题)二、探究新知1探究直角三角形三边长度的平方的关系课件出示如下地板砖示意图,引导学生从面积角度观察图形师:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积2探索勾股定理师:由刚才归纳发现的结论,我们自然产生联想:一般的直角三角形是否也具有该性质呢?课件出示题目:同学们可自由讨论(1)观察下面两幅图:
3、(2)填表:A 的面积(单位面积)B 的面积(单位面积)C 的面积(单位面积)左图右图(3)你是怎样得到左图中正方形 C 的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)针对学生的解法,教师总结学生的方法可能有:方法一:如图 1,将正方形 C 分割为四个完全相等的直角三角形和一个小正方形, SC 4 23113.12方法二:如图 2,在正方形 C 外补四个完全相等的直角三角形 ,形成大正方形,用大正方形的面积减去四个直角三角形的面积,S C5 24 2313.12方法三:如图 3,正方形 C 中除去中间 5 个小正方形外,将周围部分适当拼接可成为正方形,如图 3 中的阴影部分
4、可拼成两个小正方形,S C24513.(4)分析填入表中的数据,你发现了什么?学生通过分析数据,归纳发现:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积3表述勾股定理师:(1)你能用直角三角形的三边长 a,b,c 来表示上图中正方形的面积吗?(2)分别以 5 cm、12 cm 为直角边作出一个直角三角形 ,并测量斜边的长度探索发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方如果用 a,b 和 c 分别表示直角三角形的两直角边和斜边,那么 a2b 2c 2.数学小史:我国是最早了解勾股定理的国家之一,中国古代把直角三角形中较短的
5、直角边称为勾,较长的直角边称为股,斜边称为弦, “勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)三、举例分析课件出示教材第 3 页“随堂练习”第 1 题师:这是勾股定理基本图式,利用它可以求面积指名学生上台板书解题过程四、练习巩固1课件出示教材第 3 页“随堂练习”第 2 题(口答)2课件出示教材第 6 页习题 1.2 第 1 题师:想一想,你需要求哪些线段的长度,这些长度确定吗?独立完成,指名板演,集中讲评师:通过这个题目可以看出勾股定理可以解决什么题型?生:在直角三角形中,已知一边和另一边,可以求出第三边练习第 1 题和第 2 题是实际应用问题,体现了数学来源于生活,又服务于生活
6、,意在培养学生“用数学”的意识运用数学知识解决实际问题是数学教学的重要内容五、小结1知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方如果用 a,b 和c 分别表示直角三角形的两直角边和斜边,那么 a2b 2c 2.2方法:(1) 观察探索猜想验证归纳应用;(2)“割、补、拼、接”法3思想:(1) 特殊一般特殊;(2) 数形结合思想六、课外作业教材第 4 页习题 1.1 第 24 题依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点本节课首先创设情境激发兴趣,
7、再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得出勾股定理第 2 课时 勾股定理的验证和简单应用1掌握勾股定理,理解利用拼图验证勾股定理的方法,并能应用勾股定理解决一些实际问题2通过拼图验证勾股定理,使学生经历观察、猜想、验证的过程,进一步体会数形结合的思想和从特殊到一般的思想3在勾股定理的验证活动中,培养探究能力和合作精神,通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识重点能熟练用拼图的方法验证勾股定理难点用勾股定理解决实际
8、问题一、复习导入教师提出问题:1勾股定理的内容是什么?(指名学生回答)2上节课我们仅仅是通过测量和数格子,对具体的直角三角形进行探索,发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?师:事实上,现在已经有数百种勾股定理的验证方法,这节课我们也将去验证勾股定理二、探究新知活动 1:教师导入,小组拼图师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个完全相同的直角三角形,拼出一个以斜边为边长的正方形(请每位学生用 2 分钟时间独立拼图,再 4 人小组讨论)活动 2:层层设问,完成验证学生通过自主探究,小组讨论得到两个图形:在此基础上教
9、师提问:(1)你能用两种方法表示图 1 中大正方形的面积吗?( 学生先独立思考,再 4 人小组交流)(2)你能由此得出勾股定理吗?为什么?( 在学生回答的基础上板书(ab)24 abc 2,并得到 a2b 2c 2.)12从而利用图 1 验证了勾股定理活动 3:自主探究,完成验证师:我们利用拼图的方法,将形的问题与数的问题结合起来,利用整式运算的有关知识,从理论上验证了勾股定理,你还能利用图 2 验证勾股定理吗?(学生先独立探究,再小组交流 ,最后请一个小组同学上台讲解利用图 2 验证勾股定理)三、举例分析1课件出示教材第 6 页“议一议” 师:怎样判断图中三角形的三边是否满足 a2b 2c
10、2?生:分别求出网格中正方形的面积进行判断教师巡视指导,对于学生出现的问题及时指导,特别是每个小正方形面积的得出学生通过数格子的方法可以得出:如果一个三角形不是直角三角形,那么它的三边a,b,c 不满足 a2b 2c 2.2一个直角三角形的斜边为 20 cm ,且两直角边长度比为 34,求两直角边的长四、练习巩固飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方 4 000 m 处,过了 20 秒,飞机距离这个男孩子头顶 5 000 m,飞机每小时飞行多少千米?五、小结通过这节课的学习,你有什么收获?师生共同畅谈收获六、课外作业1教材第 7 页习题 1.2 第 25 题2上网或查阅有关书籍
11、,搜集至少 1 种勾股定理的其他证法,至少 1 个勾股定理的应用问题,一周后进行展评勾股定理作为“千古第一定理” ,其魅力在于其所具有的历史价值和应用价值,因此,应注意充分挖掘其内涵特别是让学生进行调查,再进行展示,这极大地调动了学生的积极性既加深了学生对勾股定理文化的理解,又培养了他们收集、整理资料的能力勾股定理的验证既是本节课的重点,也是本节课的难点为了突破这一难点,本节课设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手这样学生较容易地突破了本节课的难点2 一定是直角三角形吗1理解勾股定理逆定理的具体内容及勾股数的概念2经历一般规律的探索过程,发展学生的抽象思维能力和归纳能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 数学 上册 第一章 勾股定理 教案
链接地址:https://www.77wenku.com/p-39687.html