2.1一元二次方程(第1课时)课件
《2.1一元二次方程(第1课时)课件》由会员分享,可在线阅读,更多相关《2.1一元二次方程(第1课时)课件(18页珍藏版)》请在七七文库上搜索。
1、2.1 认识一元二次方程,第二章 一元二次方程,第1课时 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.了解一元二次方程的概念;(重点) 2.掌握一元二次方程的一般形式ax2+bx+c=0(a, b, c为常数,a0). (重点) 3.能根据具体问题的数量关系,建立一元二次方程的模型.(难点),学习目标,导入新课,复习引入,没有未知数,代数式,一元一次方程,二元一次方程,不等式,分式方程,2.什么叫方程?我们学过哪些方程?,含有未知数的等式叫做方程.,我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.,3.什么叫一元一次方程?,含有一个未知数,且
2、未知数的次数是1的整式方程叫做一元一次方程.,问题1:幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2 的地毯 ,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗(列出方程即可)?,解:如果设所求的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:,(8 - 2x),(5 - 2x),x,x,(8 2x),x,x,(5 2x),( 8 - 2x)( 5 - 2x)= 18. 化简:2x2 - 13x + 11 = 0 .,该方程中未知数的个数和最高次数各是多少?,问题2:观察下面等式:102 + 112 + 122 = 13
3、2 + 142你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?,解:如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为: , , , . 根据题意,可得方程:,x+1,x+2,x+3,x+4,x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2. 化简得,x2 - 8x - 200. ,该方程中未知数的个数和最高次数各是多少?,解:由勾股定理可知,滑动前梯子底端距墙 m.如果设梯子底端滑动x m ,那么滑动后梯子底端距墙 m , 根据题意,可得方程:,问题3:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直
4、距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?,6,x+6,72 + (x + 6)2 = 102. 化简得,x2 + 12 x - 15 = 0. ,10m,8m,1m,xm,该方程中未知数的个数和最高次数各是多少?, 2x2 - 13x + 11 = 0 ; x2 - 8x - 200; x2 + 12 x - 15 = 0.,1.只含有一个未知数; 2.未知数的最高次数是2; 3.整式方程,讲授新课,观察与思考,方程、 、 都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?,特点:,只含有一个未知数x的整式方程,并且都可以化为ax2+bx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.1 一元 二次方程 课时 课件
链接地址:https://www.77wenku.com/p-39776.html