高中数学公式大全(共27页)
《高中数学公式大全(共27页)》由会员分享,可在线阅读,更多相关《高中数学公式大全(共27页)(28页珍藏版)》请在七七文库上搜索。
1、高中数学常用公式及常用结论1. 元素与集合的关系, .UxACxAx2.德摩根公式 .();()UUUBBC3.包含关系 AAAR4.容斥原理 ()()cardBcardBcard()CCcrB.() ()AcardC5集合 的子集个数共有 个;真子集有 1 个;非空子集有 12,n 2n2n2n1 个;非空的真子集有 2 个.6.二次函数的解析式的三种形式(1)一般式 ;()(0)fxabc(2)顶点式 ;2)hka(3)零点式 .1x7.解连不等式 常有以下转化形式(NfM()fx)()0fN|2x.1()fx8.方程 在 上有且只有一个实根,与 不等价,前者是后0)(21k 0)(21k
2、f者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在2acbxa内,等价于 ,或 且 ,或 且)(21k0)(21f0)(1kf10)(2kf.2kab9.闭区间上的二次函数的最值 二次函数 在闭区间 上的最值只能在 处及区)0()(acxf qp, abx2间的两端点处取得,具体如下:(1)当 a0 时,若 ,则qpb,2;minmax()(),()fxfff, , .qpab2ax),()fmini(),fxfpq(2)当 a0)(1) ,则 的周期 T=a;)()af)(xf(2) ,0或 ,)(1(fxf或 ,af)或 ,则 的周期 T=2a;21()(,()012xfxa
3、f)(xf(3) ,则 的周期 T=3a;)1ff(4) 且 ,则)(1)(221xffxf1212(),0|)fafxxa的周期 T=4a;)xf(5) ()3(4)faf,则 的周期 T=5a;()fxfx(6) ,则 的周期 T=6a.(a30.分数指数幂 (1) ( ,且 ).1mna0,nN1(2) ( ,且 ).n,31根式的性质(1) .()a(2)当 为奇数时, ;na当 为偶数时, .n,0|32有理指数幂的运算性质(1) .(,)rsrsaQ(2) .()0(3) .,rrbbr注: 若 a0 ,p 是一个无理数,则 ap 表示一个确定的实数上述有理指数幂的运算性质,对于无
4、理数指数幂都适用.33.指数式与对数式的互化式.logbaN(0,1)N34.对数的换底公式 ( ,且 , ,且 , ).llmaam10N推论 ( ,且 , ,且 , , ).oglmnb0an1n035对数的四则运算法则若 a0,a1,M0,N0,则(1) ;l()llogaaN(2) ;oga(3) .ll()naR36.设函数 ,记 .若 的定义域为)0()(2acbxxfm acb42)(xf,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要R0f0单独检验.37. 对数换底不等式及其推广若 , , , ,则函数ab0x1alog()axyb(1)当 时,在 和 上 为增函
5、数.ab1(0,)a,)log()axyb, (2)当 时,在 和 上 为减函数.推论:设 , , ,且 ,则1nmp01(1) .log()logpmn(2) .2aa38. 平均增长率的问题如果原来产值的基础数为 N,平均增长率为 ,则对于时间 的总产值 ,有pxy.(1)xyNp39.数列的同项公式与前 n 项的和的关系( 数列 的前 n 项的和为 ).1,2nnsaa12nnsa40.等差数列的通项公式;*11()()nadanN其前 n 项和公式为 1()2ns1()2d.1dad41.等比数列的通项公式;*11()nnqN其前 n 项的和公式为 1(),nnasq或 .1,nnsa
6、42.等比差数列 : 的通项公式为n11,(0)nqadbq;(),nbdq其前 n 项和公式为.(1),(1)nnbdqs43.分期付款(按揭贷款) 每次还款 元(贷款 元, 次还清,每期利率为 ).1)(nabxanb44常见三角不等式(1)若 ,则 .0,)2sitx(2) 若 ,则 .(x1ncos2(3) .|sin|cos|45.同角三角函数的基本关系式 , = , .22itacosita1ct46.正弦、余弦的诱导公式 21()in,sin(2sco21()s,s(2innconco47.和角与差角公式;sin()sicosin;co.tanta1t(平方正弦公式);22sin
7、()si()siin.coco= (辅助角 所在象限由点 的象限决定,iab2i)ab()ab).t48.二倍角公式 .sin2sico.2222coincs1sin.tata149. 三倍角公式 .3sin3i4sinisn()si()3(n 为偶数)(n 为奇数)(n 为偶数)(n 为奇数).3cos4cos4cos()s()3.2tant tantan150.三角函数的周期公式 函数 ,xR 及函数 ,xR(A, 为常数,且si()yxcos()yxA0,0)的周期 ;函数 , (A, 为常数,Ttan,2kZ且 A0,0)的周期 .51.正弦定理 .2sinisinabcRBC52.余
8、弦定理;22oA;cca.sb53.面积定理(1) ( 分别表示 a、b、c 边上的高).122abcShhabc、 、(2) .1sinsisinCAB(3) .22(|)()OABBO54.三角形内角和定理 在ABC 中,有 (.22)CA55. 简单的三角方程的通解.sin(1)arcsin(,|1kxaZa.o)co.t t,R特别地,有.sin(1)k.cos2Z.tat56.最简单的三角不等式及其解集.sin(|1)(arcsin,2arcsin),xxkkkZ.2.co| o,o,a.s()(rsrs).tnactn,),2xRxkkZ.tan()(,arctn),2xRxkkZ
9、57.实数与向量的积的运算律设 、 为实数,那么(1) 结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.58.向量的数量积的运算律:(1) ab= ba (交换律);(2)( a)b= ( ab) = ab= a( b);(3)( a+b)c= a c +bc.59.平面向量基本定理 如果 e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数 1、 2,使得 a= 1e1+ 2e2不共线的向量 e1、e 2叫做表示这一平面内所有向量的一组基底60向量平行的坐标表示 设 a= ,b= ,且 b 0,则 a b(
10、b 0) .()xy(,)A1210xy53. a 与 b 的数量积(或内积)ab=|a|b|cos61. ab 的几何意义数量积 ab 等于 a 的长度| a|与 b 在 a 的方向上的投影| b|cos 的乘积62.平面向量的坐标运算(1)设 a= ,b= ,则 a+b= .1()xy2(,)12(,)xy(2)设 a= ,b= ,则 a-b= . (3)设 A ,B ,则 .12 21(,)ABOxy(4)设 a= ,则 a= .(,)R(,)(5)设 a= ,b= ,则 ab= .xy(,)1)xy63.两向量的夹角公式(a= ,b= ).122cosy1)2(,64.平面两点间的距离
11、公式=,ABd|AB(A ,B ).2211()()xy1(,)xy2(,)65.向量的平行与垂直 设 a= ,b= ,且 b 0,则2,xA|b b=a .121a b(a 0) ab=0 .2y66.线段的定比分公式 设 , , 是线段 的分点, 是实数,且 ,1(,)Pxy2(,)x(,)Px12P12P则 12y12O( ).12()OPttP1t67.三角形的重心坐标公式 ABC 三个顶点的坐标分别为 、 、 ,则ABC 的重心的坐1Ax,y)2B(3Cxy)标是 .123123(,xyG68.点的平移公式 . hxhykyk OP注:图形 F 上的任意一点 P(x,y)在平移后图形
12、 上的对应点为 ,且 的F(,)Pxy坐标为 .(,)69.“按向量平移”的几个结论(1)点 按向量 a= 平移后得到点 .Pxy(,)hk(,)Pxhyk(2) 函数 的图象 按向量 a= 平移后得到图象 ,则 的函数解析式)fC,)kC为 .()yfhk(3) 图象 按向量 a= 平移后得到图象 ,若 的解析式 ,则 的函数 (, ()fx解析式为 .x(4)曲线 : 按向量 a= 平移后得到图象 ,则 的方程为C,)0fy(,)hk.(,fxhyk(5) 向量 m= 按向量 a= 平移后得到的向量仍然为 m= .(, (,)xy70. 三角形五“心”向量形式的充要条件设 为 所在平面上一
13、点,角 所对边长分别为 ,则OAB,ABCabc(1) 为 的外心 .C22O(2) 为 的重心 .0(3) 为 的垂心 .OA(4) 为 的内心 .abc(5) 为 的 的旁心 .ABABC71.常用不等式:(1) (当且仅当 ab 时取“=”号),abR2(2) (当且仅当 ab 时取“=”号)ab(3) 30,).cc(4)柯西不等式 222()()abddR(5) .ba72.极值定理已知 都是正数,则有yx,(1)若积 是定值 ,则当 时和 有最小值 ;pyxp2(2)若和 是定值 ,则当 时积 有最大值 .sx41s推广 已知 ,则有Ryx, y)()(22(1)若积 是定值 ,则
14、当 最大时, 最大;xy|yx|yx当 最小时, 最小.|(2)若和 是定值,则当 最大时, 最小;| |当 最小时, 最大.| |73.一元二次不等式 ,如果 与20()axbc或 20,40)abaca同号,则其解集在两根之外;如果 与 异号,则其解集在两根之2axbc x间.简言之:同号两根之外,异号两根之间.;121212()()x., 0x或74.含有绝对值的不等式 当 a 0 时,有.2aax或 .x a75.无理不等式(1) .()0()()ffgxfgx(2) .2()0()()0fff 或(3) .2()()xfxgfg76.指数不等式与对数不等式 (1)当 时,1a; ()
15、()()fxgxfx.0lol()aaffgf(2)当 时,01;()()fxgxfx()0lol)aaffgf77.斜率公式 ( 、 ).21ykx1(,)Pxy2(,)xy78.直线的五种方程 (1)点斜式 (直线 过点 ,且斜率为 )11kl1(,)Pxyk(2)斜截式 (b 为直线 在 y 轴上的截距).yxb(3)两点式 ( )( 、 ( ).1122yx2y1(,)Pxy2,)xy12x(4)截距式 ( 分别为直线的横、纵截距, )ab、 0ab、(5)一般式 (其中 A、B 不同时为 0).0AxByC79.两条直线的平行和垂直 (1)若 ,11:lyk22:lkxb ;2|,b
16、 .112l(2)若 , ,且 A1、A 2、B 1、B 2 都不为零,:0AxB22:0lAByC ;1122| Cl ;180.夹角公式 (1) .21tan|k( , , )1:lyxb2:lykxb12(2) .21t|AB( , , ).1:0lC22:0lByC120AB直线 时,直线 l1 与 l2 的夹角是 .2l81. 到 的角公式 1(1) .21tank( , , )1:lyxb2:lykxb12(2) .121tAB( , , ).1:0lC22:0lByC120AB直线 时,直线 l1 到 l2 的角是 .2l82四种常用直线系方程(1)定点直线系方程:经过定点 的直
17、线系方程为 (除直线0(,)Pxy00)ykx),其中 是待定的系数 ; 经过定点 的直线系方程为0xk (,P,其中 是待定的系数0()()ABy,AB(2)共点直线系方程:经过两直线 , 的交11:lC22:lABC点的直线系方程为 (除 ),其中 是待定的系122)()0xyCxy数(3)平行直线系方程:直线 中当斜率 k 一定而 b 变动时,表示平行直线kb系方程与直线 平行的直线系方程是 ( ),0ABxy0是参变量(4)垂直直线系方程:与直线 (A0,B0)垂直的直线系方程0AxByC是 , 是参变量0BxAy83.点到直线的距离 (点 ,直线 : ).2|Cd0)Pl0xy84.
18、 或 所表示的平面区域xy设直线 ,则 或 所表示的平面区域是::lABAxByC若 ,当 与 同号时,表示直线 的上方的区域;当 与0xylB异号时,表示直线 的下方的区域.简言之,同号在上,异号在下.Cl若 ,当 与 同号时,表示直线 的右方的区域;当 与 A异号时,表示直线 的左方的区域. 简言之,同号在右,异号在左.xy85. 或 所表示的平面区域1122()()0ABxy设曲线 ( ) ,则:ABC120AB或 所表示的平面区域是:C所表示的平面区域上下两部分;1122()()xy所表示的平面区域上下两部分.0xy86. 圆的四种方程(1)圆的标准方程 .22()()abr(2)圆的
19、一般方程 ( 0).DxEF24EF(3)圆的参数方程 .cosinry(4)圆的直径式方程 (圆的直径的端点是1212()()0y、 ).1(,)Axy2(,)B87. 圆系方程(1)过点 , 的圆系方程是1xy2()2121212() ()()0yxyyx,其中 是直线0abcabc的方程 , 是待定的系数AB(2)过直线 : 与圆 : 的交点的圆系方程l0AxBC2DEF是 , 是待定的系数2 ()xyDEFy(3) 过圆 : 与圆 : 的交1211yEF2C220xyy点的圆系方程是 , 是待定的()系数88.点与圆的位置关系点 与圆 的位置关系有三种0(,)Pxy22)()(rbya
20、x若 ,则0d点 在圆外; 点 在圆上; 点 在圆内.rdPdrP89.直线与圆的位置关系直线 与圆 的位置关系有三种 :CByAx 22)()(byax;交d;0交rd.其中 .2BACba90.两圆位置关系的判定方法设两圆圆心分别为 O1,O 2,半径分别为 r1,r 2, dO21;交交421rd;3;交21;交交21r.0d91.圆的切线方程(1)已知圆 20xyDEF若已知切点 在圆上,则切线只有一条,其方程是0(,).00 ()2y当 圆外时, 表示过两个切点()xy000 ()2xEyxF的切点弦方程过圆外一点的切线方程可设为 ,再利用相切条件求 k,这时00()yk必有两条切线
21、,注意不要漏掉平行于 y 轴的切线斜率为 k 的切线方程可设为 ,再利用相切条件求 b,必有两条切线xb(2)已知圆 22xyr过圆上的 点的切线方程为 ;0(,)P20yr斜率为 的圆的切线方程为 .k1ykxr92.椭圆 的参数方程是 .21()xyabcosinayb93.椭圆 焦半径公式 20, .)(1cxePF)(22xcePF94椭圆的的内外部(1)点 在椭圆 的内部 .0(,)y21(0)yab201xyab(2)点 在椭圆 的外部 .,Pxx295. 椭圆的切线方程 (1)椭圆 上一点 处的切线方程是 .21(0)yab0(,)Pxy021xyab(2)过椭圆 外一点 所引两
22、条切线的切点弦方程是2x,.021xyab(3)椭圆 与直线 相切的条件是2(0)xab0AxByC.2ABc96.双曲线 的焦半径公式21(,)y, .1|()|aPFexc22|aPFexc97.双曲线的内外部(1)点 在双曲线 的内部 .0(,)y21(0,)yb201xyab(2)点 在双曲线 的外部 .,Px,xa298.双曲线的方程与渐近线方程的关系(1)若双曲线方程为 渐近线方程: .12bya20xyabxab(2)若渐近线方程为 双曲线可设为 .x02(3)若双曲线与 有公共渐近线,可设为 ( ,焦点在 x12bya 2byax0轴上, ,焦点在 y 轴上).099. 双曲线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公式大全
链接地址:https://www.77wenku.com/p-45743.html