北师大版九年级下数学《3.9弧长及扇形的面积》课件
《北师大版九年级下数学《3.9弧长及扇形的面积》课件》由会员分享,可在线阅读,更多相关《北师大版九年级下数学《3.9弧长及扇形的面积》课件(27页珍藏版)》请在七七文库上搜索。
1、3.9 弧长及扇形的面积,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,1.理解弧长和扇形面积公式的探求过程.(难点) 2.会利用弧长和扇形面积的计算公式进行计算. (重点),学习目标,问题1 你注意到了吗,在运动会的4100米比赛中,各选手的起跑线不再同一处,你知道这是为什么吗?,问题2 怎样来计算弯道的“展直长度”?,因为要保证这些弯道的“展直长度”是一样的.,导入新课,(1)半径为R的圆,周长是多少?,(2)1的圆心角所对弧长是多少?,n,O,(4) n的圆心角所对弧长l是多少?,1,C=2R,(3)n圆心角所对的弧长是1圆心角所对的弧长的多少倍?,n倍,讲授新课,合作探究,(1)
2、用弧长公式 进行计算时,要注意公式中n的意义n表示1圆心角的倍数,它是不带单位的. (2)区分弧、弧的度数、弧长三概念度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等弧,而只有在同圆或等圆中,才可能是等弧,要点归纳,半径为R的圆中,n的圆心角所对的弧长l为,例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm),解:由弧长公式,可得AB的长,因此所要求的展直长度l=2700+1570=2970(mm).,答:管道的展直长度为2970mm,典例精析,(,1已知扇形的圆心角为60,半径为1,则扇形的弧长为 2一个扇形的半径为8c
3、m,弧长为 cm,则扇形的圆心角为 ,针对训练,3.如图,四边形ABCD是O的内接四边形,O的半径为4,B=135,则弧AC的长为_.,2,S=R2,(2)圆心角为1的扇形的面积是多少?,(3)圆心角为n的扇形的面积是圆心角为1的扇形的面积的多少倍?,n倍,(4)圆心角为n的扇形的面积是多少?,思考 (1)半径为R的圆,面积是多少?,合作探究,如果扇形的半径为R,圆心角为n,那么扇形面积的计算公式为,公式中n的意义n表示1圆心角的倍数,它是不带单位的;公式要理解记忆(即按照上面推导过程记忆).,要点归纳,问题:扇形的弧长公式与面积公式有联系吗?,想一想 扇形的面积公式与什么公式类似?,例1 如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 九年级 数学
链接地址:https://www.77wenku.com/p-48670.html