2019年苏科版九年级下册数学期中测试卷(1)含答案
《2019年苏科版九年级下册数学期中测试卷(1)含答案》由会员分享,可在线阅读,更多相关《2019年苏科版九年级下册数学期中测试卷(1)含答案(33页珍藏版)》请在七七文库上搜索。
1、期中测试卷(1)一选择题1当 m 不为何值时,函数 y=(m2)x 2+4x5(m 是常数)是二次函数( )A 2 B2 C3 D 32抛物线 y= x2,y= 3x2,y=x 2,y=2x 2 的图象开口最大的是( )Ay= x2 By=3x 2 Cy=x 2Dy=2x 23抛物线 y=(x+1) 2+2 的顶点( )A ( 1,2) B (2,1) C (1,2) D ( 1,2)4已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论中:ac 0;a+b+c0;4a 2b+c0;2a+b0 ;4acb 24a ;a+b0 中,其中正确的个数为( )A2 B3 C4 D55已知抛物
2、线 y=(x1) 2+m(m 是常数) ,点 A( x1,y 1) ,B(x 2,y 2)在抛物线上,若 x11x 2,x 1+x22,则下列大小比较正确的是( )Am y 1y 2 Bmy 2y 1 Cy 1y 2m Dy 2y 1m6在平面直角坐标系中,O 是坐标原点,抛物线 y=x22x+4 交 y 轴于点 B,过点 B 作 ABx 轴交抛物线于点 A,连接 OA.将该抛物线向下平移 m 个单位,使平移后得到的抛物线顶点落在OAB 的内部(不包括 OAB 的边界) ,则 m 的取值范围是( )A1 m5 B1m4 C1m3 D1m27已知二次函数 y=a(x 1) 2+b(a 0)有最小
3、值 1,则 a 与 b 之间的大小关系是( )Aa b Ba=b Cab D不能确定8设抛物线 y=x2+8xk 的顶点在 x 轴上,则 k 的值为( )A 16 B16 C8 D89已知抛物线 y=x2x3 与 x 轴的一个交点为(m,0) ,则代数式 m2m+2017 的值为( )A2017 B2020 C2019 D201810在 17 月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )A1 月份 B2 月份 C5 月份 D7 月份11城市中“打车难” 一直是人们关注的一个社会热点
4、问题.近几年来, “互联网+”战略与传统出租车行业深度融合, “优步” 、 “滴滴出行” 等打车软件就是其中典型的应用.名为“数据包络分析”(简称 DEA)的一种效率评价方法,可以很好地优化出租车资源配置.为了解出租车资源的 “供需匹配” ,北京、上海等城市对每天24 个时段的 DEA 值进行调查,调查发现,DEA 值越大,说明匹配度越好.在某一段时间内,北京的 DEA 值 y 与时刻 t 的关系近似满足函数关系y=ax2+bx+c(a,b,c 是常数,且 a0) ,如图记录了 3 个时刻的数据,根据函数模型和所给数据,当“ 供需匹配” 程度最好时,最接近的时刻 t 是( )A4.8 B5 C
5、5.2 D5.512如图,ABC 中,AB=AC=12,ADBC 于点 D,点 E 在 AD 上且 DE=2AE,连接 BE 并延长交 AC 于点 F,则线段 AF 长为( )A4 B3 C2.4 D213列运算正确的是( )A ( a3) 2=a9 B (a) 2a3=a5 C2a(a+b )=2a 2+2a Da 5+a5=a10二填空题14函数 +ax+2,当 a= 时,它是二次函数.15对于二次函数 y=x22mx3,有下列结论:它的图象与 x 轴有两个交点;如果当 x1 时,y 随 x 的增大而减小,则 m=1;如果将它的图象向左平移 3 个单位后过原点,则 m=1;如果当 x=2
6、时的函数值与 x=8 时的函数值相等,则 m=5.其中一定正确的结论是 .(把你认为正确结论的序号都填上)16如图,在ABC 中, DEBC ,AD=6,DB=3,AE=4,则 AC 的长为 .17如图,ABGHCD,点 H 在 BC 上,AC 与 BD 交于点 G,AB=2 ,CD=4,则GH 的长为 .18如图,已知桥拱形状为抛物线,其函数关系式为 y= x2,当水位线在 AB位置时,水面的宽度为 12m,这时水面离桥拱顶部的距离是 .19如图,在平面直角坐标系中,已知 A(1,0) ,D(3,0) ,ABC 与DEF位似,原点 O 是位似中心,若 AB=2,则 DE= .三解答题20在平
7、面直角坐标系中,设二次函数 y1=(x +a) (xa 1) ,其中 a0(1)若函数 y1 的图象经过点( 1, 2) ,求函数 y1 的表达式;(2)若一次函数 y2=ax+b 的图象与 y1 的图象经过 x 轴上同一点,探究实数 a,b 满足的关系式;(3)已知点 P(x 0,m )和 Q(1,n)在函数 y1 的图象上,若 mn,求 x0 的取值范围.21如图,Rt AOB 的直角边 OA 在 x 轴上,OA=2,AB=1,将 RtAOB 绕点 O逆时针旋转 90得到 RtCOD,抛物线 y= x2+bx+c 经过 B、D 两点.(1)求二次函数的解析式;(2)连接 BD,点 P 是抛
8、物线上一点,直线 OP 把BOD 的周长分成相等的两部分,求点 P 的坐标 .22随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为 2 米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为 1 米处达到最高,水柱落地处离池中心 3 米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?23如图示,正方形 ABCD 的顶点 A 在等腰直角三角形 DEF 的斜边 EF 上,EF与 BC 相交于点 G,连接 CF.求证:DAE DCF ; 求证:ABGCFG.24如图,AB 为半
9、圆 O 的直径,C 为 BA 延长线上一点,CD 切半圆 O 于点 D,连接 OD作 BECD 于点 E,交半圆 O 于点 F已知 CE=12,BE=9.(1)求证:CODCBE.(2)求半圆 O 的半径 r 的长.25如图,在矩形 ABCD 中,点 E 是 AD 上的一个动点,连结 BE,作点 A 关于BE 的对称点 F,且点 F 落在矩形 ABCD 的内部,连结 AF,BF ,EF,过点 F 作GFAF 交 AD 于点 G,设 =n.(1)求证:AE=GE;(2)当点 F 落在 AC 上时,用含 n 的代数式表示 的值;(3)若 AD=4AB,且以点 F,C ,G 为顶点的三角形是直角三角
10、形,求 n 的值.答案一选择题1当 m 不为何值时,函数 y=(m2)x 2+4x5(m 是常数)是二次函数( )A 2 B2 C3 D 3【考点】H1:二次函数的定义【专题】选择题【难度】易【分析】利用二次函数的定义,形如 y=ax2+bx+c(a 、b、c 为常数,a0) 【解答】解:根据二次函数的定义,得 m20 ,即 m2当 m2 时,函数 y=( m2)x 2+4x5(m 是常数)是二次函数故选 B【点评】本题考查二次函数的定义2抛物线 y= x2,y= 3x2,y=x 2,y=2x 2 的图象开口最大的是( )Ay= x2 By=3x 2 Cy=x 2Dy=2x 2【考点】H2:二
11、次函数的图象【专题】选择题【难度】易【分析】根据二次函数中|a|的值越小,则函数图象的开口也越大,可以得出那个选项是正确的【解答】解:二次函数中|a|的值越小,则函数图象的开口也越大,又 ,抛物线 y= x2,y=3x 2,y=x 2,y=2x 2 的图象开口最大的是 y= x2,故选 A【点评】本题考查二次函数的图象,解题的关键是明确二次函数图象的特点,知道|a|的值越小,则开口越大3抛物线 y=(x+1) 2+2 的顶点( )A ( 1,2) B (2,1) C (1,2) D ( 1,2)【考点】H3:二次函数的性质【专题】选择题【难度】易【分析】由抛物线解析式可求得其顶点坐标【解答】解
12、:y=(x+1) 2+2,抛物线顶点坐标为(1,2) ,故选 A【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在 y=a(x h) 2+k 中,顶点坐标为(h,k) ,对称轴为直线 x=h4已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论中:ac 0;a+b+c0;4a 2b+c0;2a+b0 ;4acb 24a ;a+b0 中,其中正确的个数为( )A2 B3 C4 D5【考点】H4:二次函数图象与系数的关系【专题】选择题【难度】易【分析】由抛物线的开口方向判断 a 与 0 的关系,由抛物线与 y 轴的交点判断c 与 0 的关系,然后根据对称轴及抛物线
13、的顶点坐标情况进行推理,进而对所得结论进行判断【解答】解:解:图象开口向下,与 y 轴交于负半轴,对称轴在 y 轴右侧,能得到:a0,c0,ac 0,故正确;当 x=1 时,y 0 ,a+b+c0,故错误;当 x=2 时, y0,4a 2b+c0,故正确;对称轴 x= 1,2a+b0,故 错误;抛物线的顶点在 x 轴的上方, 0,4acb 24a,故正确;2a+b 0 ,2a+baa,a +ba ,a 0 ,a 0 ,a +b0 ,故 正确;综上所述正确的个数为 4 个,故选:C【点评】本题主要考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求 2a 与 b 的关系,以及二次函数
14、与方程之间的转换,根的判别式的熟练运用5已知抛物线 y=(x1) 2+m(m 是常数) ,点 A( x1,y 1) ,B(x 2,y 2)在抛物线上,若 x11x 2,x 1+x22,则下列大小比较正确的是( )Am y 1y 2 Bmy 2y 1 Cy 1y 2m Dy 2y 1m【考点】H5:二次函数图象上点的坐标特征【专题】选择题【难度】易【分析】根据二次函数的性质得到抛物线 y=(x1) 2+m 的开口向下,有最大值为 m,对称轴为直线 x=1,设 A(x 1,y 1)的对称点为 A(x 0,y 1) ,从而求得x1+x0=2,由 x11x 2,x 1+x22,得出 1x 0x 2,则
15、在对称轴右侧, y 随 x 的增大而减小,所以 1x 0x 2 时,my 1y 2【解答】解:y=(x 1) 2+m,a=10,有最大值为 m,抛物线开口向下,抛物线 y=(x 1) 2+m 对称轴为直线 x=1,设 A(x 1,y 1)的对称点为 A(x 0,y 1) , =1,x 1+x0=2,x 1+x22 ,x 11x 2,1x 0x 2,my 1y 2故选 A【点评】本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a 0,抛物线开口向下;对称轴为直线 x= ,在对称轴左侧, y 随 x 的增大而增大,在对称
16、轴右侧,y 随 x 的增大而减小6在平面直角坐标系中,O 是坐标原点,抛物线 y=x22x+4 交 y 轴于点 B,过点 B 作 ABx 轴交抛物线于点 A,连接 OA.将该抛物线向下平移 m 个单位,使平移后得到的抛物线顶点落在OAB 的内部(不包括 OAB 的边界) ,则 m 的取值范围是( )A1 m5 B1m4 C1m3 D1m2【考点】H6:二次函数图象与几何变换【专题】选择题【难度】易【分析】设原抛物线的顶点为 D,过点 D 作 DEAB 于点 E 交 AO 于点 F先根据抛物线的解析式求出点 B 的坐标,再利用对称性求出点 A 的坐标,再利用二次函数的顶点坐标,根据 AB 的中点
17、 E 的坐标以及 F 点的坐标即可得出 m 的取值范围【解答】解:如图,设原抛物线的顶点为 D,过点 D 作 DEAB 于点 E 交 AO 于点 Fy= x22x+4=(x+1) 2+5,B(0,4) ,D (1,5) ,对称轴为直线 x=1,ABx 轴交抛物线于点 A,A 的坐标(2,4) ,AB 的中点 E 的坐标是(1,4) ,OA 的中点是 F,F 的坐标是(1,2) ,当 D 点平移到 E 点时,平移后得到的抛物线顶点不在OAB 的内部,再继续往下平移正好进入OAB 的内部,当 D 点平移到 F 点时,平移后得到的抛物线顶点正好不在OAB 的内部,m 的取值范围是:1m3故选 C【点
18、评】此题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,二次函数的性质,线段中点坐标公式,利用数形结合思想是解题的难点,同学们应重点掌握7已知二次函数 y=a(x 1) 2+b(a 0)有最小值 1,则 a 与 b 之间的大小关系是( )Aa b Ba=b Cab D不能确定【考点】H7:二次函数的最值【专题】选择题【难度】易【分析】根据函数有最小值判断出 a 的符号,进而由最小值求出 b,比较 a、b可得出结论【解答】解:二次函数 y=a(x 1) 2+b(a0 )有最小值,抛物线开口方向向上,即 a0;又最小值为1,即 b=1,a b 故选:C【点评】本题考查的是二次函数的最值,
19、求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法8设抛物线 y=x2+8xk 的顶点在 x 轴上,则 k 的值为( )A 16 B16 C8 D8【考点】H8:待定系数法求二次函数解析式【专题】选择题【难度】易【分析】顶点在 x 轴上,所以顶点的纵坐标是 0【解答】解:根据题意得 =0,解得 k=16故选 A【点评】本题考查求抛物线顶点纵坐标的公式,比较简单9已知抛物线 y=x2x3 与 x 轴的一个交点为(m,0) ,则代数式 m2m+2017 的值为( )A2017 B2020 C2019 D2018【考点】HA:抛物线与 x 轴的交点【专题】选择
20、题【难度】易【分析】把(m,0)代入 y=x2x3 可以求得 m2m=3,再将其整体代入所求的代数式进行求值即可【解答】解:抛物线 y=x2x3 与 x 轴的一个交点为(m,0) ,m 2m3=0,m 2m=3,m 2m+2017=3+2017=2020故选:B【点评】本题考查了抛物线与 x 轴的交点二次函数图象上点的坐标都满足该二次函数的解析式10在 17 月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )A1 月份 B2 月份 C5 月份 D7 月份【考点】HE:二次函数的应用【专题
21、】选择题【难度】易【分析】先根据图中的信息用待定系数法表示出每千克售价的一次函数以及每千克成本的二次函数,然后每千克收益=每千克售价每千克成本,得出关于收益和月份的函数关系式,根据函数的性质得出收益的最值以及相应的月份【解答】解:设 x 月份出售时,每千克售价为 y1 元,每千克成本为 y2 元根据图甲设 y1=kx+b, , ,y 1= x+7根据图乙设 y2=a(x6) 2+1,4=a(36) 2+1,a= ,y 2= (x6) 2+1y=y 1y2,y= x+7 (x 6) 2+1,y= x2+ x6y= x2+ x6,y= (x5) 2+ 当 x=5 时,y 有最大值,即当 5 月份出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年苏科版 九年级 下册 数学 期中 测试 答案
链接地址:https://www.77wenku.com/p-49463.html