冀教版九年级数学下册《30.4(第1课时)抛物线形问题》课件
《冀教版九年级数学下册《30.4(第1课时)抛物线形问题》课件》由会员分享,可在线阅读,更多相关《冀教版九年级数学下册《30.4(第1课时)抛物线形问题》课件(26页珍藏版)》请在七七文库上搜索。
1、30.4 二次函数的应用,导入新课,讲授新课,当堂练习,课堂小结,第1课时 抛物线形问题,第三十章 二次函数,1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题(重点) 2.利用二次函数解决拱桥及运动中的有关问题(重、难点),导入新课,问题引入,如图,一座拱桥的纵截面是抛物线的一部分,拱桥的跨度是4.9米,水面宽是4米时,拱顶离水面2米.现在想了解水面宽度变化时,拱顶离水面的高度怎样变化你能想出办法来吗?,讲授新课,这是什么样的函数呢?,你能想出办法来吗?,合作探究,怎样建立直角坐标系比较简单呢?,以拱顶为原点,抛物线的对称轴为y轴,建立直角坐标系,如图,从图看出,什么形式的二次函数,
2、它的图象是这条抛物线呢?,由于顶点坐标系是(0.0),因此这个二次函数的形式为,如何确定a是多少?,已知水面宽4米时,拱顶离水面高2米,因此点A(2,-2)在抛物线上,由此得出,因此, ,其中 x是水面宽度的一半,y是拱顶离水面高度的相反数,这样我们就可以了解到水面宽度变化时,拱顶离水面高度怎样变化,解得,由于拱桥的跨度为4.9米,因此自变量x的取值范围是:,水面宽3m时 从而 因此拱顶离水面高1.125m,现在你能求出水面宽3米时,拱顶离水面高多少米吗?,知识要点,建立二次函数模型解决实际问题的基本步骤是什么?,实际问题,建立二次函数模型,利用二次函数的图象和性质求解,实际问题的解,例1 某
3、公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少要多少m才能使喷出的水流不致落到池外?,典例精析,解:建立如图所示的坐标系, 根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25)., C, D,根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.,当y=0时,可求得点C的坐标为(2.5,0) ; 同理,点
4、D的坐标为(-2.5,0) .,设抛物线为y=a(x+h)2+k,由待定系数法可求得抛物线表达式为:y= (x-1)2+2.25.,例2:如图,一名运动员在距离篮球圈中心4m(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少米?,解:如图,建立直角坐标系. 则点A的坐标是(1.5,3.05),篮球在最大高度时的位置为B(0,3.5). 以点C表示运动员投篮球的出手处.,解得,设以y轴为对称轴的抛物线的解析式为 y=a(x-0)2+k
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冀教版 九年级 数学 下册 30
链接地址:https://www.77wenku.com/p-50197.html