冀教版九年级数学下册《31.4(第2课时)用树形图法求简单事件的概率》课件
《冀教版九年级数学下册《31.4(第2课时)用树形图法求简单事件的概率》课件》由会员分享,可在线阅读,更多相关《冀教版九年级数学下册《31.4(第2课时)用树形图法求简单事件的概率》课件(29页珍藏版)》请在七七文库上搜索。
1、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 用树形图法求简单事件的概率,31.4 用列举法求简单事件概率,第三十一章 随机事件的概率,学习目标,1.进一步理解等可能事件概率的意义. 2.学习运用树形图计算事件的概率. 3.进一步学习分类思想方法,掌握有关数学技能.,导入新课,问题引入,现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少?,讲授新课,互动探究,问题1 抛掷一枚均匀的硬币,出现正面向
2、上的概率是多少?,P(正面向上)=,问题2 同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?,可能出现的结果有,(正,正),(正,反),(反,正),(反,反),P(正面向上)=,(正,正),(正,反),(反,正),同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?,开始,第2枚,第1枚,正,反,正,反,正,正,结果,(反,反),(正,正),(正,反),(反,正),P(正面向上)=,树状图的画法,一个试验,第一个因素,第二个因素,如一个试验中涉及2个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况.,A,B,1,2,3,1,2,3,则其树形图如图.,n=23=6,树状图法:按事件
3、发生的次序,列出事件可能出现的结果.,问题 尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A,B,C的概率.,A:“小明胜” B:“小华胜” C “平局”,合作探究,解:,小明,小华,结果,开始,一次游戏共有9个可能结果,而且它们出现的可能性相等.,因此P(A)=,事件C发生的所有可能结果: (石头,石头)(剪刀,剪刀)(布,布).,事件A发生的所有可能结果: (石头,剪刀)(剪刀,布)(布,石头);,事件B发生的所有可能结果: (剪刀,石头)(布,剪刀)(石头,布);,P(B)=,P(C)=,画树状图求概率的基本步骤,(1)明确一次试验的几个步骤及顺序; (2)画树状图
4、列举一次试验的所有可能结果; (3)数出随机事件A包含的结果数m,试验的所有可能结果数n; (4)用概率公式进行计算.,典例精析,例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.,解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.,开始,获演唱奖的,获演奏奖的,男,女,女,女1,男2,男1,女2,女1,男2,男1,女1,男2,男1,女2,女2,共有12中结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=,计算等可能
5、情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复,不遗漏地得出n和m.,例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.,(1)写出三次传球的所有可能结果(即传球的方式);,(2)指定事件A:“传球三次后,球又回到甲的手中”, 写出A发生的所有可能结果;,(3)求P(A).,解:(1),第二次,第三次,结果,开始:甲,共有八种可能的结果,每种结果出现的可能性相同;,(2)传球三次后,球又回到甲手中,事件A发生有两种可能出现结果(乙,丙,甲)(丙,乙,甲) (3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冀教版 九年级 数学 下册 31
链接地址:https://www.77wenku.com/p-50206.html