冀教版九年级数学下册《第30章小结与复习》课件
《冀教版九年级数学下册《第30章小结与复习》课件》由会员分享,可在线阅读,更多相关《冀教版九年级数学下册《第30章小结与复习》课件(28页珍藏版)》请在七七文库上搜索。
1、小结与复习,第三十章 二次函数,要点梳理,考点讲练,课堂小结,课后作业,一、二次函数的定义,要点梳理,1一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数特别地,当a0,bc0时, yax2是二次函数的特殊形式,2二次函数的三种基本形式 (1)一般式:yax2bxc(a,b,c是常数,a0); (2)顶点式:ya(xh)2k(a0),由顶点式可以直接写出二次函数的顶点坐标是(h,k); (3)交点式:ya(xx1)(xx2)(a0),其中x1,x2是图象与x轴交点的横坐标,二、二次函数的图像和性质,三、二次函数yax2bxc的图象特征与系数a,b,c的关系,四、二次函
2、数图象的平移,任意抛物线ya(xh)2k可以由抛物线yax2经过平移得到,具体平移方法如下:,五、二次函数表达式的求法,1一般式:yax2bxc (a 0) 若已知条件是图象上三个点的坐标,则设一般式yax2bxc(a0),将已知条件代入,求出a,b,c的值,2顶点式:ya(xh)2k(a0) 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式ya(xh)2k(a0),将已知条件代入,求出待定系数的值,最后将解析式化为一般式,3交点式:ya(xx1)(xx2)(a0) 若已知二次函数图象与x轴的两个交点的坐标,则设交点式ya(xx1)(xx2)(a0),将第三点的坐标或其他已知条
3、件代入,求出待定系数a的值,最后将解析式化为一般式,六、二次函数与一元二次方程的关系,二次函数yax2bxc的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点.当二次函数yax2bxc的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2bxc=0的根.,有两个交点,有两个相异的实数根,b2-4ac 0,有一个交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,七、二次函数的应用,2一般步骤:(1)找出问题中的变量和常量以及它们之间 的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质
4、解决实际问题;(4)检验结果的合理性,是否符合实际意义,1二次函数的应用包括以下两个方面(1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);(2)利用二次函数的图像求一元二次方程的近似解,考点讲练,例1 抛物线yx22x3的顶点坐标为_,【解析】 方法一:配方,得yx22x3(x1)22,则顶点坐标为(1,2) 方法二:代入公式 , , 则顶点坐标为(1,2),解决此类题目可以先把二次函数yax2bxc配方为顶点式ya(xh)2k的形式,得到:对称轴是直线xh,最值为yk,顶点坐标为(h,k);也可以直接利用公式求解.,1对于y2(x3)22的图象下列叙述正确的是( )
5、A顶点坐标为(3,2) B对称轴为y3 C当x3时,y随x的增大而增大 D当x3时,y随x的增大而减小,C,例2 二次函数yx2bxc的图象如图所示,若点A(x1,y1),B(x2,y2)在此函数图象上,且x1y2,【解析】由图象看出,抛物线开口向下,对称轴是直线x1,当x1时,y随x的增大而增大x1x21,y11可得2ab0,故正确;由图象上横坐标为 x2的点在第三象限可得4a2bc0,故正确;,由图象上横坐标为x1的点在第四象限得出abc0,由图象上横坐标为x1的点在第二象限得出 abc0,则(abc)(abc)0, 即(ac)2b20,可得(ac)2b2,故正确故选D.【答案】 D,1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冀教版 九年级 数学 下册 30 小结 复习 课件
链接地址:https://www.77wenku.com/p-50213.html