高考数学命题热点名师解密专题:数列的通项公式的求解方法(理)
《高考数学命题热点名师解密专题:数列的通项公式的求解方法(理)》由会员分享,可在线阅读,更多相关《高考数学命题热点名师解密专题:数列的通项公式的求解方法(理)(13页珍藏版)》请在七七文库上搜索。
1、一 【学习目标】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.3.会利用已知数列的通项公式或递推关系式求数列的某项.4.会用数列的递推关系求其通项公式.二 【方法总结】1.利用通项公式,应用函数思想是研究数列特征的基本方法之一,应善于运用函数观点认识数列,用函数的图象与性质研究数列性质. 练习 1. 已知数列 na满足 1, ,则数列 1na的前 40 项的和为( )A. 1920 B. 3546 C. 8 D. 204【答案】D【方法总结】:这个题目考查的是数列的求和问题。首先数列求和选用的方法有,裂项求和,主要用于分式能够通过写成两
2、项相减的形式从而消掉中间的项;分组求和,用于相邻两项之和是定值,或者有规律的;错位相减求和,用于一个等差一个等比乘在一起求和的数列。练习 2. 数列 na满足 1,且对于任意的 *nN都有 ,则 等于( )A. 20167 B. 432 C. 0178 D. 432【答案】D【方法总结】:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:求出数列的前几项,再归纳猜想出数列的一个通项公式;将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项使用裂项法求和时,要注意正负项相消时消去了哪些项
3、,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的练习 3. 已知数列 na满足 1, 23a,若 ,则数列na的通项 n( )A. 12 B. C. 13n D. 12n【答案】B【解析】 , , ,则 ,数列 1na是首项为 2,公比为 2 的等比数列,利用叠加法, ,则 12na.选 B. 【方法总结】:由前几项归纳数列通项或变化规律的常用方法及具体策略(1)常用方法:观察(观察规律 )、比较(比较已知数列) 、归纳、转化 (转化为特殊数列)、联想( 联想常见的数列)等方法.(2)具体策略:分式中分子、分母的特征;相邻项的变化特征;
4、 拆项后的特征;各项的符号特征和绝对值特征;化异为同.对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;对于符号交替出现的情况,可用 处理.练习 1. 数列 的一个通项公式可能是( )A. 12n B. 12n C. 12n D. 12n【答案】D练习 2.数列 0.3,0.33,0.333,0.333 3,的通项公式是 an( )A. (10n1) B. C. (10n1) D. (10n1).【答案】B【解析】1 0.9,1 0.99,故原数列的通项公式为 an .选 B.练习 3两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子
5、表示数,按照点或小石子能排列的形状对数进行分类.如下图中实心点的个数 5,9,14,20,为梯形数.根据图形的构成,记此数列的第 2017 项为 2017a,则 20175( )A. B. C. 10823 D. 0178【答案】C【方法总结】:根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:相邻项的变化特征;拆项后的各部分特征;符号特征应多进行对比、分析,从整体到局部多角度观察、归纳、联想4.项和互化求通项例 4.设 是数列 的前 项和,且 ,则 na=( )A. 132nB. 123nC. 13nD. 3【答案】D【解析】由题意可得: ,考查所给选项:,则选项 B 错误
6、;当 2n时: ,即 ,考查 ACD 选项: ,则选项 AC 错误,本题选择 D 选项.【方法规律总结】:给出 nS 与 a 的递推关系,求 an,常用思路是:一是利用 转化为 an 的递推关系,再求其通项公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之间的关系,再求 an.练习 1. 设数列 na满足 , 通项公式是( )A. 12n B. 12n C. 12na D. 12na【答案】C练习 2. 设数列 na满足 ,通项公式是( )A. 12n B. 12n C. 12na D. 12na【答案】C【解析】当 时, 1,.(1) , (2),(1)-(2)得: 12na ,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 命题 热点 名师 解密 专题 数列 公式 求解 法理
链接地址:https://www.77wenku.com/p-54335.html