高考文科数学命题热点名师解密专题:解三角形的方法(含答案)
《高考文科数学命题热点名师解密专题:解三角形的方法(含答案)》由会员分享,可在线阅读,更多相关《高考文科数学命题热点名师解密专题:解三角形的方法(含答案)(13页珍藏版)》请在七七文库上搜索。
1、【学习目标】掌握正、余弦定理,能利用这两个定理及面积计算公式解斜三角形,培养运算求解能力【方法总结】1.利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角( 从而进一步求出其他的边和角).2.由正弦定理容易得到:在三角形中,大角对大边,大边对大角;大角的正弦值 也较大,正弦值较大的角也较大,即 ABa bsin Asin B.3.已知三角形两边及其一边的对角解三角形时,利用正弦定理求解时,要注意判断三角形解的情况(存在两解、一解和无解三种可能).而解的情况确定的一般方法是“大边对大角且三角形钝角至多一个”.4
2、.利用余弦定理,可以解决以下三类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其余角;(3)已知两边和其中一边的对角,求其他边和角.(4)由余弦值确定角的大小时,一定要依据角的范围及函数值的正负确定.【三角形 解题方法类型】(一)正余弦定理的灵活应用例 1在 中, .(1)求角 的大小;(2)求 的取值范围.【答案】 (1) ;(2)【解析】 ()由正弦定理,求得 ,再由余弦定理,求得 ,即可 求解 的大小;()由()知,得 ,化简 ,根据三角函数的图象与性质,即可求解.【详解】 (1)因为 , 由正弦定理 ,得 , 由余弦定理 , 又因为 ,所以 (二)三
3、角形中的中线问题例 2在 中,内角 的对边分别为 ,若 , .()求 ;()若 为 边的中线,且 ,求 的面积【答案】 () ; () .【解析】 ()根据题意,由正弦定理得, ,进而得到即 ,由 , .由 得到 ,最后由正弦定理可得的值;()设 .在 中,由余弦定理得 ,解得 .得到三边长,结合()可求的面积()设 .在 中,由余弦定理得即解得 . . 的面积 .练习 1在ABC 中,角 A,BC 的对边分别为 a,b,c,已知 a2,b ,2sinC5sinA(1)求 B;(2)求 BC 边上的中线长【答案】 (1)60;(2) .【解析】 (1)又 2sinC5sinA,利用正弦定理可得
4、:2c 5a,又 a2,解得 c利用余弦定理即可得出B; (2)利用余弦定理求出 BC 边上的中线即可练习 2在ABC 中,角 A、B 、C 所对的边分别为 a、b、c,且 .(1)求角 C 的大小;(2)若 A= ,ABC 的面积为 ,M 为 BC 的中点,求 AM.【答案】(1) (2) .【解析】 (1)利用正弦定理,结合同角三角函数的关系化简已知的等式,得到三边的关系式,再利用余弦定理表示出 的值,可求角 的大小;(2)求得 , 为等腰三角形,由三角形面积公式可求出 的值,再利用余弦定理可得出 的值.【详解】(1)由正弦定理得: 即C 为三角形的内角, 【点睛】解三角形问题,多为边和角
5、的求值问题,这就需要根据正、余弦定理以及三角形面积公式结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.(三)面积的最值问题例 3在 中,角 A,B,C 的对边分别为 且 .(1)若 ,且 ,求 的值(2)求 的面积的最大值.【答案】(1) (2)【解析】 (1)由余弦定理可得 ,解得 ,又由 且 ,联立方程组,即可求解,(2)由余弦定理 ,又由 ,求得 ,即可求解面积的最大值.(2)由余弦定理 ,得因为 ,所以 ,又因为 ,所以三角形的面积为 ,此时 .【点睛】本题主要考查了余弦定理、基本不等式的应用,其中解答中合理利用余弦定理,得到 的关系,再利用基本不等式求解是解答的关键,着
6、重考查了分析问题和解答问题的能力,属于基础题.练习 1已知ABC 的内角 A,B,C 满足 (1)求角 A;(2)若ABC 的外接圆半径为 1,求ABC 的面积 S 的最大值【答案】 (1) ; (2) .【解析】 (1)利用正弦定理将角化为边可得 ,再由余弦定理即可得 ;(2)由正弦定理 ,可得 ,由基本不等式利用余弦定理可得 ,从而由可得解.(2) ,所以 ,所以 ( 时取等号) 练习 1在ABC 中,a,b,c 分别是内角 A,B,C 的对边,已知 (sinA+sinB)(a+b)=c(sinC+sinB).(1)求角 A;(2)若 ,求ABC 周长的取值范围。【答案】 (1) ;(2)
7、【解析】 (1)利用正弦定理将题目所给方程转化为边的形式,再利用余弦定理化简,可求得角 的余弦值,并求得角 的大小.(2)先利用余弦定理得到 ,利用基本不等式求得 ,由此求得周长的最大值.再根据三角形两边的和大于第三边,求得周长的范围.(五)三角形与三角函数综合例 5已知向量 ,函数 . ()若 ,求 的值;()在 中,角 对边分别是 ,且满足 ,求 的取值范围.【答案】() ()【解析】 () 利用三角恒等变换化简 得出 ,通过配凑角的方法即可得出 的值.()由 ,结合余弦定理即可得出 从而 ,得出 B 的范围即可求得 的取值范围.()由 ,得,从而得 故 【详解】 (1)令 , ,解得;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 命题 热点 名师 解密 专题 三角形 方法 答案
链接地址:https://www.77wenku.com/p-54768.html