高考文科数学命题热点名师解密专题:导数有关的构造函数方法
《高考文科数学命题热点名师解密专题:导数有关的构造函数方法》由会员分享,可在线阅读,更多相关《高考文科数学命题热点名师解密专题:导数有关的构造函数方法(17页珍藏版)》请在七七文库上搜索。
1、专题 07 导数有关的构造函数方法一知识点基本初等函数的导数公式(1)常用函数的导数(C)_( C 为常数); ( x)_;(x 2)_; _;(1x)( ) _x(2)初等函数的导数公式(x n)_; (sin x) _;(cos x)_; (e x)_;(a x)_; (ln x)_;(log ax)_5导数的运算法则(1)f(x)g(x) _;(2)f(x)g(x)_;(3) _f(x)g(x)6复合函数的导数(1)对于两个函数 yf(u)和 ug(x),如果通过变量 u,y 可以表示成 x 的函数,那么称这两个函数(函数yf(u)和 ug(x)的复合函数为 yf( g(x)(2)复合函
2、数 yf(g( x)的导数和函数 yf (u),ug(x) 的导数间的关系为_,即 y 对 x的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积二题型分析1.构造多项式函数2.构造三角函数型3.构造 形式的函数xe4.构造成积的形式5.与 有关的构造ln6.构造成商的形式7.对称问题(一)构造多项式函数例 1已知函数 fxR满足 1fl,且 fx的导函数 12fx,则 12xf的解集为( )A. B.|x C. D. |1【答案】D【解析】令 ,则 ,所 以函数 Fx在定义域上为单调递减函数,因为 12xf,所以 ,即 ,根据函数 在定义域上单调递减,可知,故选 D.考点:函数的单调性
3、与导数的关系.【方法点晴】本题主要考查了函数的单调性与函数的导数之间的关系,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值等知 识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题设条件,构造新函数 Fx,利用新函数的性质是解答问题的关键,属于中档试题.练习 1.设函数 ()fx在 R上存在导函数 ()fx,对于任意的实数 x,都有 ,当(,0)x时, .若 ,则实数 m的取值范围是( )A 12 B 3,)2 C 1,) D 2,)【答案】A考点:导数在函数单调性中的应用. 【思路点睛】因为 ,设 ,则 ,可得()gx为
4、奇函数,又 ,得 ()gx在 ,0)上是减函数,从而在 R上是减函数,在根据函数的奇偶性和单调性可得 ,由此即可求出结果.练习 2.设奇函数 在 上存在导数 ,且在 上 ,若 ,则实数 的取值范围为( )A BC D【答案】B【解析】令 ,因为 ,所以函数 的奇函数,因为 时, ,所以函数 在 为减函数,又题意可知,所以函数 在 上为减函数,所以 ,即,所以 ,所以 ,故选 B.考点:函数的奇偶性及其应用.【方法点晴】本题主要考查了函数的奇偶性及其应用,其中解答中涉及到利用导数求函数的单调性、利用导数研究函数的极值、以及函数的奇偶性的判定等知识点的综合考查,着重考查了转化与化归的思想方法,以及
5、学生的推理与运算能力,属于中档试题,解答中得出函数的奇函数和函数的单调性是解答的关键.练习 3.设函数 ()fx在 R上存在导函数 ()fx,对任意 R,都有 ,且 (0,)x时,()fx,若 ,则实数 a的取值范围是( )A 1, B ,1 C ,2 D 2,【答案】B【解析】令 ,则 ,则 ,得 ()gx为 R上的奇函数 0x时, ,故 ()gx在 0,)单调递增,再结合0及 ()为奇函数,知 ()g在 ,)为增函数,又则,即 ,1a故选 B考点:函数的单调性及导数的应用.【方法点晴】本题考查了利用导数研究函数的单调性,然后构造函数,通过新函数的性质把已知条件转化为关于 a的不等式来求解.
6、本题解答的关键是由已知条件 ()fx进行联想,构造出新函数,然后结合 来研究函数 g的奇偶性和单调性,再通过要解的不等式 构造 ,最终得到关于 a的不等式,解得答案.(二)构造三角函数型例 2已知函数 fx的定义域为 R, fx为函数 fx的导函数,当 0,x时,且 , .则下列说法一定正确的是( )A. B.C. D.【答案】B【解析】令 ,则 .因为当 0,x时,即 ,所以 ,所以在 0,x上单调递增.又 xR, ,所以,所以 ,故为奇函数,所以 在 上单调递增,所以.即 ,故选 B.考点:(1)利用导数研究函数的单调性;(2)函数的综合应用.练习 1已知函数 )(xfy对任意的 满足 (
7、其中 )(xf是函数)(xf的导函数) ,则下列不等式成立的是( )A BC D【答案】A【解析】构造函数 ,则 ,即函数 g(x)在 单调递增,则 , ,即 ,故 A 正确 ,即考点:利用导数研究函数的单调性练习 2定义在 )2,0(上的函数 )(xf, f是它的导函数,且恒有 成立,则( )A.B.C D.【答案】D【解析】在区间 0,2上,有 ,即 令,则 ,故 Fx在区间 0,2上单调递增.令 ,则有 ,D 选项正确.考点:1、函数导数;2、构造函数法【思路点晴】本题有两个要点,第一个要点是“切化弦”,在不少题目中,如果遇到 tanx,往往转化为sincox来思考;第二个要点是构造函数
8、法,题目中 ,可以化简为,这样我们就可以构造一个除法的函数 ,而选项正好是判断单调性的问题,顺势而为.(三)构造 形式的函数 xe例 3已知函数 f的导数为 fx ,且 对 xR恒成立,则下列函数在实数集内一定是增函数的为( )A. fx B. f C.e D. xe【答案】D【解析】设 ,则 .对 Rx恒成立,且 0xe. 在 R上递增,故选 D.考点:1、函数的求导法则;2、利用导数研究函数的单调性.练习 1. 设函数 )(f是函数 的导函数, 1)0(f,且 ,则的解集为( )A. ),34ln( B. ),32ln( C. ),23( D. ),3(e【答案】B【解析】依题意 ,构造函
9、数 ,由 ,得 , ln23x考点:函数导数,构造函数法【思路点晴】本题考查导函数的概念,基本初等函数和复合函数的求导,对数的运算及对数函数的单调性.构造函数法是在导数题目中一个常用的解法.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理练习 2.已知 fx定义在 R上的函数, fx是 f的导函数,若 ,且 02f,则不等式 (其中 e为自然对数的底数)的解集是( )A B 1, C 0, D【答案】C考点:利用导数研究函数的单调性.【方法点晴】本题考查函数单调性与奇偶性的
10、结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题 的关键,属于中档题结合已知条件中的 以及所求结论 可知应构造函数 ,利用导数研究 xgy的单调性,结合原函数的性质和函数值,即可求解.练习 3定义在 R上的函数 fx的导函数为 f,若对任意实数 ,有 ,且 1fx为奇函数,则不等式 的解集是( )A ,0 B 0, C 1,e D 1,e【答案】B【解析】设 由 ,得 ,故函数 gx在 R上单调递减由 1fx为奇函数 01f,所以 不等式等价于 xfe,即 ,结合函数 gx的单调性可得 0x,从而不等式的解集为 0,,故答案为 B.考点:利用导数研究函数的单调性. 【方法点晴】本题
11、考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题常见的构造思想是使含有导数的不等式一边变为 0,即 得 ,当是形如 时构造 ;当是 时构造 ,在本题中令 , ( Rx) ,从而求导 0xg,从而可判断 xgy单调递减,从而可得到不等式的解集练习 4.已知定义在 上的可导函数 f的导函数 f,满足 ,且 2fx为偶函数,41f,则不等式 xfe的解集为( )A 2, B 4, C 1, D 0,【答案】D【解析】设 ,则函数 gx( ) 是 R上的减函数,函数 2f是偶函数,函数函数关于 2x对称, 原不等式等价为 1gx( ) , 不等式 fe等价 ( )
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 命题 热点 名师 解密 专题 导数 有关 构造 函数 方法
链接地址:https://www.77wenku.com/p-54785.html