人教A版高中数学必修四《2.3.1 平面向量基本定理》课件
《人教A版高中数学必修四《2.3.1 平面向量基本定理》课件》由会员分享,可在线阅读,更多相关《人教A版高中数学必修四《2.3.1 平面向量基本定理》课件(35页珍藏版)》请在七七文库上搜索。
1、2.3.1 平面向量基本定理,第二章 2.3 平面向量的基本定理及坐标表示,学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义. 2.在平面内,当一组基底选定后,会用这组基底来表示其他向量. 3.会应用平面向量基本定理解决有关平面向量的综合问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量基本定理,思考1,如果e1,e2是两个不共线的确定向量,那么与e1,e2在同一平面内的任一向量a能否用e1,e2表示?依据是什么?,答案 能.依据是数乘向量和平行四边形法则.,答案,思考2,如果e1,e2是共线向量,那么向量a能否用e1,e2表示?为什么?,答案 不一
2、定,当a与e1共线时可以表示,否则不能表示.,梳理,(1)平面向量基本定理:如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的 向量a, _实数1,2,使a1e12e2. (2)基底: 的向量e1,e2叫做表示这一平面内 向量的一组基底.,不共线,任意,有且只有一对,不共线,所有,思考1,知识点二 两向量的夹角与垂直,平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?,答案,答案 存在夹角,不一样.,思考2,ABC为等边三角形,ABC60, 则CBD120,故向量a与b的夹角为120.,答案,梳理,当0时,a与b ;当180时,a与b . (
3、2)垂直:如果a与b的夹角是90,则称a与b垂直,记作ab.,非零向量,AOB,反向,同向,题型探究,类型一 对基底概念的理解,例1 如果e1,e2是平面内两个不共线的向量,那么下列说法中不正确的是 e1e2(,R)可以表示平面内的所有向量; 对于平面内任一向量a,使ae1e2的实数对(,)有无穷多个; 若向量1e11e2与2e12e2共线,则有且只有一个实数,使得1e11e2(2e12e2); 若存在实数,使得e1e20,则0. A. B. C. D.,答案,解析,解析 由平面向量基本定理可知,是正确的; 对于,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数
4、对是唯一的; 对于,当两向量的系数均为零,即12120时,这样的有无数个,故选B.,反思与感悟,考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来.,答案,解析,跟踪训练1 若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是 A.e1e2,e2e1 B.2e1e2,e1 e2 C.2e23e1,6e14e2 D.e1e2,e1e2,解析 选项A中,两个向量为相反向量,即e1e2(e2e1),则e1e2,e2e1为共线向量; 选项B中,2e1e22(e1 e2),也为共线向量; 选项C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 2.3
链接地址:https://www.77wenku.com/p-55393.html