人教A版高中数学选修1-1《第1课时抛物线的简单几何性质》课件
《人教A版高中数学选修1-1《第1课时抛物线的简单几何性质》课件》由会员分享,可在线阅读,更多相关《人教A版高中数学选修1-1《第1课时抛物线的简单几何性质》课件(39页珍藏版)》请在七七文库上搜索。
1、第1课时 抛物线的简单几何性质,第二章 2.3.2 抛物线的简单几何性质,学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质. 2.会利用抛物线的性质解决一些简单的抛物线问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 抛物线的几何性质,思考 观察下列图形,思考以下问题:,观察焦点在x轴的抛物线与双曲线及椭圆的图形,分析其几何图形存在哪些区别?,答案 抛物线与另两种曲线相比较,有明显的不同,椭圆是封闭曲线,有四个顶点,有两个焦点,有中心;双曲线虽然不是封闭曲线,但是有两支,有两个顶点,两个焦点,有中心;抛物线只有一条曲线,一个顶点,一个焦点,无中心.,梳理,x
2、,y,(0,0),1,x0,yR,x0,yR,xR,y0,xR,y0,知识点二 焦点弦的性质,如图,AB是过抛物线y22px(p0)焦点F的一条弦,设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),相应的准线为l. (1)以AB为直径的圆必与准线l相切.,(3)|AB|x1x2p.,如当90时,AB叫做抛物线的通径,是所有焦点弦中最短的.,思考辨析 判断正误 1.抛物线关于顶点对称.( ) 2.抛物线只有一个焦点,一条对称轴,无对称中心.( ) 3.抛物线的标准方程虽然各不相同,但是其离心率都相同.( ),题型探究,例1 已知抛物线的焦点F在x轴上,直线l过F且垂直于x轴,l与
3、抛物线交于A,B两点,O为坐标原点,若OAB的面积等于4,求此抛物线的标准方程.,类型一 抛物线几何性质的应用,解答,解 由题意,设抛物线方程为y22mx(m0),,所以|AB|2|m|. 因为OAB的面积为4,,引申探究 等腰直角三角形AOB内接于抛物线y22px(p0),O为抛物线的顶点,OAOB,则AOB的面积是 A.8p2 B.4p2 C.2p2 D.p2,答案,解析,解析 因为抛物线的对称轴为x轴,内接AOB为等腰直角三角形,所以由抛物线的对称性知,直线AB与抛物线的对称轴垂直,从而直线OA与x轴的夹角为45.,所以易得A,B两点的坐标分别为(2p,2p)和(2p,2p).,反思与感
4、悟 把握三个要点确定抛物线简单几何性质 (1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x 还是y,一次项的系数是正还是负. (2)关系:顶点位于焦点与准线中间,准线垂直于对称轴. (3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.,跟踪训练1 已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴距离分别为10和6,求抛物线的方程.,解答,解 设抛物线的方程为y22ax(a0),点P(x0,y0). 因为点P到对称轴距离为6, 所以y06. 因为点P到准线距离为10,,因为点P在抛物线上,所以362ax0, ,所以所求抛物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 选修 课时 抛物线 简单 几何 性质 课件
链接地址:https://www.77wenku.com/p-55447.html