人教A版高中数学选修1-1《第2课时双曲线几何性质的应用》课件
《人教A版高中数学选修1-1《第2课时双曲线几何性质的应用》课件》由会员分享,可在线阅读,更多相关《人教A版高中数学选修1-1《第2课时双曲线几何性质的应用》课件(44页珍藏版)》请在七七文库上搜索。
1、第2课时 双曲线几何性质的应用,第二章 2.2.2 双曲线的简单几何性质,学习目标 1.了解直线与双曲线的位置关系. 2.了解与直线、双曲线有关的弦长、中点等问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线与双曲线的位置关系,思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗?,答案 不能.,梳理 设直线l:ykxm(m0), ,把代入得(b2a2k2)x22a2mkxa2m2a2b20.,(1)当b2a2k20,即k 时,直线l与双曲线C的渐近线 ,直线与双曲线 . (2)当b2a2k20,即k 时,(2a2m
2、k)24(b2a2k2)(a2m2a2b2). 0直线与双曲线 ,此时称直线与双曲线 ; 0直线与双曲线 ,此时称直线与双曲线 ; 0直线与双曲线 ,此时称直线与双曲线 .,平行,相交于一点,有两个公共点,相交,有一个公共点,相切,没有公共点,相离,知识点二 弦长公式,若斜率为k(k0)的直线与双曲线相交于A(x1,y1),B(x2,y2)两点,则 |AB|_,思考辨析 判断正误 1.若直线与双曲线交于一点,则直线与双曲线相切.( ) 2.直线l:yx与双曲线C:2x2y22有两个公共点.( ),题型探究,(1)求双曲线C的方程;,类型一 直线与双曲线的位置关系,解答,所以a23b2,,解 联
3、立直线与双曲线方程,,解答,反思与感悟 (1)解决直线与双曲线的公共点问题,不仅要考虑判别式,更要注意二次项系数为0时,直线与渐近线平行的特殊情况. (2)双曲线与直线只有一个公共点的题目,应分两种情况讨论:双曲线与直线相切或直线与双曲线的渐近线平行. (3)注意对直线l的斜率是否存在进行讨论.,跟踪训练1 已知双曲线x2 1,过点P(1,1)的直线l与双曲线只有一个公共点,求直线l的斜率k.,解答,解 当直线l的斜率不存在时, 直线l:x1与双曲线相切,符合题意. 当直线l的斜率存在时, 设l的方程为yk(x1)1, 代入双曲线方程, 得(4k2)x2(2k2k2)xk22k50. 当4k2
4、0时,k2, 直线l与双曲线的渐近线平行,l与双曲线只有一个公共点;,类型二 弦长公式及中点弦问题,解答,解 设直线l的方程为yxm,代入双曲线方程,得3x28mx4(m21)0, (8m)2434(m21)16(m23)0, m23. 设直线l与双曲线交于A(x1,y1),B(x2,y2)两点,,直线l的方程为yx5.,解答,(2)过点P(3,1)作直线l,使其被双曲线截得的弦恰被P点平分,求直线l的方程.,解 设直线l与双曲线交于A(x3,y3),B(x4,y4)两点, 点P(3,1)为AB的中点,则x3x46,y3y42.,两式相减得(x3x4)(x3x4)4(y3y4)(y3y4)0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 选修 课时 双曲线 几何 性质 应用 课件
链接地址:https://www.77wenku.com/p-55448.html