人教A版高中数学选修2-1课件:2.2.2 椭圆的简单几何性质(二)
《人教A版高中数学选修2-1课件:2.2.2 椭圆的简单几何性质(二)》由会员分享,可在线阅读,更多相关《人教A版高中数学选修2-1课件:2.2.2 椭圆的简单几何性质(二)(48页珍藏版)》请在七七文库上搜索。
1、第二章 2.2 椭圆,2.2.2 椭圆的简单几何性质(二),学习目标 1.进一步巩固椭圆的简单几何性质. 2.掌握直线与椭圆位置关系等相关知识.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 点与椭圆的位置关系,答案,思考2,答案,梳理,知识点二 直线与椭圆的位置关系,思考1,直线与椭圆有几种位置关系?,有三种位置关系,分别有相交、相切、相离.,答案,思考2,答案,梳理,(1)判断直线和椭圆位置关系的方法 将直线的方程和椭圆的方程联立,消去一个未知数,得到一个一元二次方程.若0,则直线和椭圆 ;若0,则直线和椭圆 ;若0.,题型探究,类型一 点、直线与椭圆位置关系的判断,
2、命题角度1 点与椭圆位置关系的判断,答案,解析,引申探究 若将本例中P点坐标改为“P(1,k)”呢?,答案,解析,处理点与椭圆位置关系问题时,紧扣判定条件,然后转化为解不等式等问题,注意求解过程与结果的准确性.,反思与感悟,A.点(3,2)不在椭圆上 B.点(3,2)不在椭圆上 C.点(3,2)在椭圆上 D.以上都不正确,答案,解析,A.相交 B.相切 C.相离 D.不确定,直线ykxk1k(x1)1过定点(1,1),且该点在椭圆内部,因此必与椭圆相交.,答案,解析,命题角度2 直线与椭圆位置关系的判断,解答,直线与椭圆的位置关系判别方法(代数法) 联立直线与椭圆的方程,消元得到一元二次方程
3、(1)0直线与椭圆相交有两个公共点. (2)0直线与椭圆相切有且只有一个公共点. (3)0直线与椭圆相离无公共点.,反思与感悟,A.1 B.1或2 C.2 D.0,所以点(3,1)在椭圆的内部,故直线l与椭圆有2个公共点.,答案,解析,答案,解析,类型二 弦长及中点问题,解答,方法一 根与系数的关系、中点坐标公式法 由椭圆的对称性,知直线AB的斜率存在, 设直线AB的方程为y1k(x2). 将其代入椭圆方程并整理,得(4k21)x28(2k2k)x4(2k1)2160. 设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两根,又M为线段AB的中点,故所求直线的方程为x2y40.,方
4、法二 点差法 设A(x1,y1),B(x2,y2),x1x2. M(2,1)为线段AB的中点, x1x24,y1y22. 又A,B两点在椭圆上,于是(x1x2)(x1x2)4(y1y2)(y1y2)0.故所求直线的方程为x2y40.,方法三 对称点法(或共线法) 设所求直线与椭圆的一个交点为A(x,y), 由于点M(2,1)为线段AB的中点, 则另一个交点为B(4x,2y). A,B两点都在椭圆上,得x2y40. 即点A的坐标满足这个方程,根据对称性,点B的坐标也满足这个方程,而过A,B两点的直线只有一条,故所求直线的方程为x2y40.,引申探究 在本例中求弦AB的长.,由上例得直线AB方程为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 选修 课件 2.2
链接地址:https://www.77wenku.com/p-55626.html