北师大版高中数学必修一课件:4.1.2 利用二分法求方程的近似解
《北师大版高中数学必修一课件:4.1.2 利用二分法求方程的近似解》由会员分享,可在线阅读,更多相关《北师大版高中数学必修一课件:4.1.2 利用二分法求方程的近似解(35页珍藏版)》请在七七文库上搜索。
1、1.2 利用二分法求方程的近似解,第四章 1 函数与方程,学习目标 1.理解二分法的原理及其适用条件. 2.掌握二分法的实施步骤. 3.体会二分法中蕴含的逐步逼近与程序化思想.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 二分法的原理,思考 通过上节课的学习,我们知道f(x)ln x2x6的零点在区间(2,3)内,如何缩小零点所在区间(2,3)的范围?,答案 取区间(2,3)的中点2.5. 计算f(2.5)的值,用计算器算得f(2.5)0.084.因为f(2.5)f(3)0,所以零点在区间(2.5,3)内.,梳理 二分法的概念 如果在区间a,b上,函数f(x)的图像是 ,且 ,
2、则区间a,b内有方程f(x)0的解. 依次取有解 ,如果取到某个区间的中点x0,恰使f(x0)0,则x0就是所求的一个解;如果区间中点的函数值总不等于零,那么,不断地重复上述操作,就得到一系列闭区间,方程的一个解在这些区间中,区间长度 ,端点逐步逼近方程的解,可以得到一个近似解. 像这样每次 ,将区间 ,再经比较,按需要留下其中一个小区间的方法称为二分法.,一条连续的曲线,f(a)f(b)0,区间的中点,越来越小,取区间的中点,一分为二,知识点二 精度与精确到,思考 “精确到0.1”与“精度为0.1”一样吗?,答案 不一样.比如得数是1.25或1.34,精确到0.1都是通过四舍五入后保留一位小
3、数得1.3.而“精度为0.1”指零点近似值所在区间(a,b)满足|ab|0.1,比如零点近似值所在区间(1.25,1.34).若精度为0.1,则近似值可以是1.25,也可以是1.34.,梳理 在许多实际应用中,不需要求出方程精确的解,只要满足一定的精度就可以.设 是方程f(x)0的一个解,给定正数,若x0满足 ,就称x0是满足精度的近似解. 为了得到满足精度的近似解,只需找到方程的一个有解区间a,b,那么区间(a,b)内任意一个数都是满足精度的近似解. 事实上,任意选取两数x1,x2(a,b),都有|x1x2|.由于 (a,b),所以任意选取x(a,b)都有|x |.,|x0 |,使得区间长度
4、ba,知识点三 二分法求方程近似解的步骤,利用二分法求方程实数解的过程可以用下图表示出来.,在这里: “初始区间”是一个两端函数值反号的区间; “M”的含义是:取新区间,一个端点是原区间的中点,另一端是原区间两端点中的一个,新区间两端点的函数值反号; “N”的含义是:方程解满足要求的精度; “P”的含义是:选取区间内的任意一个数作为方程的近似解.,思考辨析 判断正误 1.如果函数零点两侧函数值同号,不适合用二分法求此零点近似值. ( ) 2.要用二分法,必须先确定零点所在区间.( ) 3.用二分法最后一定能求出函数零点.( ) 4.达到精度后,所得区间内任一数均可视为零点的近似值.( ),题型
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 高中数学 必修 课件 4.1
链接地址:https://www.77wenku.com/p-55886.html