苏教版高中数学必修五课件:1.3 正弦定理、余弦定理的应用(一)
《苏教版高中数学必修五课件:1.3 正弦定理、余弦定理的应用(一)》由会员分享,可在线阅读,更多相关《苏教版高中数学必修五课件:1.3 正弦定理、余弦定理的应用(一)(30页珍藏版)》请在七七文库上搜索。
1、第1章 解三角形,1.3 正弦定理、余弦定理的应用(一),1.会用正弦、余弦定理解决生产实践中有关不可到达点距离的测量问题. 2.培养提出问题、正确分析问题、独立解决问题的能力.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 常用角,思考,答案,试画出“北偏东60”和“南偏西45”的示意图.,梳理 在解决实际问题时常会遇到一些有关角的术语,请查阅资料后填空: (1)方向角 指北或指南方向线与目标方向所成的小于 度的角. (2)仰角与俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线 时叫仰角,目标视线在水平线 时叫俯角.(如下图所示) (3)方
2、位角 从指 方向 时针转到目标 方向线的角.,90,上方,下方,北,顺,知识点二 测量方案,思考,答案,如何不登月测量地月距离?,可以在地球上选两点,与月亮构成三角形,测量地球上两点的距离和这两点看月亮的视角,通过解三角形求得地月距离.,梳理 测量某个量的方法有很多,但是在实际背景下,有些方法可能没法实施,比如不可到达的两点间的距离.这个时候就需要设计方案绕开障碍间接地达到目的.设计测量方案的基本任务是把目标量转化为可测量的量,并尽可能提高精确度.一般来说,基线越长,精确度越高.,题型探究,例1 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测
3、出AC的距离是55 m,BAC51,ACB75.求A、B两点间的距离(精确到0.1 m).,解答,类型一 测量可到达点与不可到达点间的距离,所以A、B两点间的距离为65.7 m.,解决实际测量问题的过程一般要充分理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.,反思与感悟,跟踪训练1 在相距2千米的A、B两点处测量目标点C,若CAB75,CBA60,则A、C两点之间的距离为 千米.,答案,解析,如图所示, 由题意知C180AB45,,类型二 测量两个不可到达点间的距离,例2 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版 高中数学 必修 课件
链接地址:https://www.77wenku.com/p-55957.html