人教B版高中数学必修四课件:2.3.1 向量数量积的物理背景与定义
《人教B版高中数学必修四课件:2.3.1 向量数量积的物理背景与定义》由会员分享,可在线阅读,更多相关《人教B版高中数学必修四课件:2.3.1 向量数量积的物理背景与定义(38页珍藏版)》请在七七文库上搜索。
1、2.3.1 向量数量积的物理背景与定义,第二章 2.3 平面向量的数量积,学习目标 1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功. 2.掌握平面向量数量积的定义和运算律,理解其几何意义. 3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 向量的夹角,思考1,平面中的任意两个向量都可以平移至同一起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?,答案,答案 存在夹角,不一样.,思考2,ABC为正三角形,设 a, b,则向量a与b的夹角是多少?,答案,ABC为等边三角形, ABC60
2、, 则CBD120, 故向量a与b的夹角为120.,两个向量夹角的定义 (1)已知两个非零向量a,b,作 a, b, 则 称作向量a和向量b的夹角,记作 ,并规定它的范围是. 在这个规定下,两个向量的夹角被唯一确定了,并且有a,b .(2)当 时,我们说向量a和向量b互相垂直,记作 .,梳理,AOB,a,b,0a,b,b,a,ab,知识点二 向量在轴上的正射影,思考,向量在轴上的正射影是向量还是数量?其在轴上的坐标的符号取决于谁?,答案,答案 向量b在轴上的射影是一个向量,其在轴上的坐标为数量,其符号取决于夹角的范围:当为锐角时,该数量为正值; 当为钝角时,该数量为负值;当为直角时,该数量为0
3、; 当0时,该数量为|b|;当180时,该数量为|b|.,向量在轴上的正射影 已知向量a和轴l(如图). 作 a,过点O,A分别作轴l的垂线,垂足分别为O1,A1,则向量 叫做向量a在轴l上的正射影(简称射影),该射影在轴l上的坐标,称作a在上的数量或在 上的数量. a在轴l上正射影的坐标记作al,向量a的方向与轴l的正向所成的角为,则由三角函数中的余弦定义有al|a|cos .,梳理,轴l,轴l的方向,知识点三 向量的数量积(内积),思考1,如图,一个物体在力F的作用下产生位移s,且力F与位移s的夹角为,那么力F所做的功W是多少?,答案,答案 W|F|s|cos .,思考2,对于两个非零向量
4、a与b,我们把数量|a|b|cos 叫做a与b的数量积(或内积),记作ab,即ab|a|b|cos ,那么ab的运算结果是向量还是数量?特别地,零向量与任一向量的数量积是多少?,答案,答案 ab的运算结果是数量. 0a0.,向量数量积的定义叫做向量a和b的数量积(或内积),记作ab,即ab|a|b|cos a,b .,梳理,|a|b|cos a,b ,知识点四 向量数量积的性质,思考1,设a与b都是非零向量,若ab,则ab等于多少?反之成立吗?,答案,答案 abab0.,思考2,当a与b同向时,ab等于什么?当a与b反向时,ab等于什么?特别地,aa等于什么?,答案 当a与b同向时,ab|a|
5、b|; 当a与b反向时,ab|a|b|;,思考3,|ab|与|a|b|的大小关系如何?为什么?对于向量a,b,如何求它们的夹角?,答案,答案 |ab|a|b|,设a与b的夹角为, 则ab|a|b|cos . 两边取绝对值得|ab|a|b|cos |a|b|. 当且仅当|cos |1, 即cos 1,0或时,取“”. 所以|ab|a|b|.,两个向量内积有如下重要性质 (1)如果e是单位向量,则aeea (a0). (2)abab ,且ab ab(a0,b0). (3)aa 或|a| .(4)cosa,b (|a|b|0). (5)|ab| |a|b|.,梳理,|a|cosa,e,0,0,|a|
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 课件 2.3
链接地址:https://www.77wenku.com/p-56102.html