人教A版高中数学必修一课件:3.2.2 函数模型的应用实例
《人教A版高中数学必修一课件:3.2.2 函数模型的应用实例》由会员分享,可在线阅读,更多相关《人教A版高中数学必修一课件:3.2.2 函数模型的应用实例(33页珍藏版)》请在七七文库上搜索。
1、3.2.2 函数模型的应用实例,第三章 3.2 函数模型及其应用,学习目标 1.能利用已知函数模型求解实际问题. 2.能自建确定性函数模型解决实际问题. 3.了解建立拟合函数模型的步骤,并了解检验和调整的必要性.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 几类已知函数模型,指数型函数与指数函数在解析式上有什么不同?,答案,答案 指数函数yax(a0,a1)的系数为1,且没有常数项.确定一个指数函数解析式只需要一个条件;指数型函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)指数式前的系数不一定是1,而且可能还有常数项.所以确定指数型函数通常需要3个条件.,几
2、类函数模型:,梳理,思考,知识点二 自建函数模型,数据拟合时,得到的函数为什么要检验?,答案,答案 因为限于我们的认识水平和一些未知因素的影响,现实可能与我们所估计的函数有误差或甚至不切合客观实际,此时就要检验,调整模型或改选其他函数模型.,梳理,面临实际问题,建立函数模型的步骤: (1)收集数据; (2)画散点图; (3)选择函数模型; (4)求函数模型; (5)检验; (6)用函数模型解释实际问题.,题型探究,例1 某列火车从北京西站开往石家庄,全程277 km.火车出发10 min开出13 km后,以120 km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并
3、求火车离开北京2 h内行驶的路程.,解答,类型一 利用已知函数模型求解实际问题,因为火车匀速行驶t h所行驶的路程为120t,,在实际问题中,有很多问题的两变量之间的关系是已知函数模型,这时可借助待定系数法求出函数解析式.再根据解题需要研究函数性质.,反思与感悟,跟踪训练1 如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.则水位下降1米后,水面宽_米.,答案,解析,解析 以拱顶为原点,过原点与水面平行的直线为x轴,建立平面直角坐标系(如图), 则水面和拱桥交点A(2,2), 设抛物线所对应的函数关系式为yax2(a0),,命题角度1 非分段函数模型 例2 某化工厂引进一条先进生产
4、线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y 48x8 000,已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?,类型二 自建确定性函数模型解决实际问题,解答,解 设可获得总利润为R(x)万元,,R(x)在0,210上是增函数,x210时,,年产量为210吨时,可获得最大利润1 660万元.,自建模型时主要抓住四个关键:“求什么,设什么,列什么,限制什么”. 求什么就是弄清楚要解决什么问题,完成什么任务. 设什么就是弄清楚这个问题有哪些因素,谁是核心因素,通常设核心因素
5、为自变量. 列什么就是把问题已知条件用所设变量表示出来,可以是方程、函数、不等式等. 限制什么主要是指自变量所应满足的限制条件,在实际问题中,除了要使函数式有意义外,还要考虑变量的实际含义,如人不能是半个等.,反思与感悟,解答,由此可知,为获得最大利润,对甲、乙两种商品的资金投入分别为0.75万元和2.25万元,共获得利润1.05万元.,解 设对甲种商品投资x万元, 则对乙种商品投资(3x)万元,总利润为y万元.,命题角度2 分段函数模型 例3 某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 课件 3.2
链接地址:https://www.77wenku.com/p-57759.html