2018年四川省泸州市中考数学试题含答案解析
《2018年四川省泸州市中考数学试题含答案解析》由会员分享,可在线阅读,更多相关《2018年四川省泸州市中考数学试题含答案解析(23页珍藏版)》请在七七文库上搜索。
1、第 1 页(共 23 页)2018 年四川省泸州市中考数学试题( 解析版)一、选择题(本大题共 12 个小题,每小题 3 分,共 36 分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1 (3 分)在2,0, , 2 四个数中,最小的是( )A 2 B0 C D2【分析】根据正数大于零,零大于负数,可得答案【解答】解:由正数大于零,零大于负数,得2 0 2,2 最小,故选:A【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键2 (3 分)2017 年,全国参加汉语考试的人数约为 6500000,将 6500000 用科学记数法
2、表示为( )A6.510 5B6.510 6C6.5 107D6510 5【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a |10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:6500000=6.510 6,故选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值3 (3 分)下列计算,结果等于 a4 的是( )第 2 页(共 23 页)
3、Aa +3a Ba 5a C ( a2) 2 Da 8a2【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可【解答】解:A、a+3a=4a,错误;B、a 5 和 a 不是同类项,不能合并,故此选项错误;C、 ( a2) 2=a4,正确;D、a 8a2=a6,错误;故选:C【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则4 (3 分)如图是一个由 5 个完全相同的小正方体组成的立体图形,它的俯视图是( )A B C D【分析】根据从上面看得到的图形是俯视图,可得答案【解
4、答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图5 (3 分)如图,直线 ab,直线 c 分别交 a,b 于点 A,C,BAC 的平分线交直线 b 于点 D,若1=50,则2 的度数是( )第 3 页(共 23 页)A50 B70 C80 D110【分析】直接利用角平分线的定义结合平行线的性质得出BAD=CAD=50,进而得出答案【解答】解:BAC 的平分线交直线 b 于点 D,BAD=CAD,直线 ab,1=50,BAD=CAD=50,2=1805050=80故选:C【点评】此题主要考查
5、了平行线的性质,正确得出BAD=CAD=50是解题关键6 (3 分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄 13 14 15 16 17人数 1 2 2 3 1则这些学生年龄的众数和中位数分别是( )A16, 15 B16,14 C15,15 D14,15【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【解答】解:由表可知 16 岁出现次数最多,所以众数为 16 岁,因为共有 1+2+2+3+1=9 个数据,所以中位数为第 5 个数
6、据,即中位数为 15 岁,第 4 页(共 23 页)故选:A【点评】本题考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数7 (3 分)如图,ABCD 的对角线 AC,BD 相交于点 O,E 是 AB 中点,且AE+EO=4,则ABCD 的周长为( )A20 B16 C12 D8【分析】首先证明:OE= BC,由 AE+EO=4,推出 AB+BC=8 即可解决问题;【解答】解:四边形 ABCD 是
7、平行四边形,OA=OC,AE=EB,OE= BC,AE +EO=4,2AE+ 2EO=8,AB+BC=8,平行四边形 ABCD 的周长=28=16,故选:B【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型8 (3 分) “赵爽弦图” 巧妙地利用面积关系证明了勾股定理,是我国古代数学的第 5 页(共 23 页)骄傲如图所示的“ 赵爽弦图” 是由四个全等的直角三角形和一个小正方形拼成的一个大正方形设直角三角形较长直角边长为 a,较短直角边长为 b若ab=8,大正方形的面积为 25,则小正方形的边长为( )A9 B6 C4 D3【分
8、析】由题意可知:中间小正方形的边长为:ab,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长【解答】解:由题意可知:中间小正方形的边长为:ab,每一个直角三角形的面积为: ab= 8=4,4 ab+(ab) 2=25,(a b) 2=2516=9,a b=3,故选:D【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型9 (3 分)已知关于 x 的一元二次方程 x22x+k1=0 有两个不相等的实数根,则实数 k 的取值范围是( )Ak 2 Bk0 Ck2 Dk0【分析】利用判别式的意义得到=(2) 24(k1)0,然后解不等式即可【解答】解:根据题
9、意得=(2) 24(k1)0,解得 k2 故选:C【点评】本题考查了根的判别式:一元二次方程 ax2+bx+c=0(a0)的根与=b24ac 有如下关系:当0 时,方程有两个不相等的实数根;当=0 时,方第 6 页(共 23 页)程有两个相等的实数根;当0 时,方程无实数根10 (3 分)如图,正方形 ABCD 中,E,F 分别在边 AD,CD 上,AF,BE 相交于点 G,若 AE=3ED,DF=CF,则 的值是( )A B C D【分析】如图作,FNAD,交 AB 于 N,交 BE 于 M设 DE=a,则 AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FNAD,交
10、 AB 于 N,交 BE 于 M四边形 ABCD 是正方形,ABCD,FNAD,四边形 ANFD 是平行四边形,D=90,四边形 ANFD 是解析式,AE=3DE,设 DE=a,则 AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,AN=BN,MNAE,BM=ME,MN= a,第 7 页(共 23 页)FM= a,AE FM, = = = ,故选:C【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型11 (3 分)在平面直角坐标系内,以原点 O 为原心, 1 为半径作
11、圆,点 P 在直线 y= 上运动,过点 P 作该圆的一条切线,切点为 A,则 PA 的最小值为( )A3 B2 C D【分析】如图,直线 y= x+2 与 x 轴交于点 C,与 y 轴交于点 D,作 OHCD于 H,先利用一次解析式得到 D(0,2 ) ,C(2 ,0) ,再利用勾股定理可计算出 CD=4,则利用面积法可计算出 OH= ,连接 OA,如图,利用切线的性质得 OAPA ,则 PA= ,然后利用垂线段最短求 PA 的最小值【解答】解:如图,直线 y= x+2 与 x 轴交于点 C,与 y 轴交于点 D,作OHCD 于 H,当 x=0 时,y= x+2 =2 ,则 D(0 ,2 )
12、,当 y=0 时, x+2 =0,解得 x=2,则 C( 2,0) ,CD= =4, OHCD= OCOD,OH= = ,连接 OA,如图,PA 为 O 的切线,第 8 页(共 23 页)OAPA ,PA= = ,当 OP 的值最小时, PA 的值最小,而 OP 的最小值为 OH 的长,PA 的最小值为 = 故选:D【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了一次函数的性质12 (3 分)已知二次函数 y=ax2+2ax+3a2+3(其中 x 是自变量) ,当 x2 时,y随 x 的增大而增大,且2x1 时,y 的
13、最大值为 9,则 a 的值为( )A1 或 2 B 或 C D1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上 a0,然后由2x1 时,y 的最大值为 9,可得 x=1 时,y=9,即可求出a【解答】解:二次函数 y=ax2+2ax+3a2+3(其中 x 是自变量) ,对称轴是直线 x= =1,当 x2 时,y 随 x 的增大而增大,a 0 ,2 x1 时,y 的最大值为 9,第 9 页(共 23 页)x=1 时,y=a+2a +3a2+3=9,3a 2+3a6=0,a=1,或 a=2(不合题意舍去) 故选:D【点评】本题考查了二次函数的性质,二次函数 y=ax2+b
14、x+c(a 0)的顶点坐标是( , ) ,对称轴直线 x= ,二次函数 y=ax2+bx+c(a 0)的图象具有如下性质:当 a0 时,抛物线 y=ax2+bx+c(a0)的开口向上,x 时,y 随 x 的增大而减小;x 时,y 随 x 的增大而增大;x= 时,y 取得最小值 ,即顶点是抛物线的最低点 当 a0 时,抛物线y=ax2+bx+c(a0)的开口向下,x 时,y 随 x 的增大而增大;x 时,y 随 x 的增大而减小;x= 时,y 取得最大值 ,即顶点是抛物线的最高点二、填空题(每小题 3 分,共 12 分)13 (3 分)若二次根式 在实数范围内有意义,则 x 的取值范围是 x1
15、【分析】先根据二次根式有意义的条件列出关于 x 的不等式,求出 x 的取值范围即可【解答】解:式子 在实数范围内有意义,x10,解得 x1故答案为:x1【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于 014 (3 分)分解因式:3a 23= 3(a+1) (a 1) 【分析】先提取公因式 3,再对余下的多项式利用平方差公式继续分解第 10 页(共 23 页)【解答】解:3a 23,=3(a 21) ,=3(a+1) (a1) 故答案为:3(a+1) (a 1) 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时
16、因式分解要彻底,直到不能分解为止15 (3 分)已知 x1,x 2 是一元二次方程 x22x1=0 的两实数根,则的值是 6 【分析】根据根与系数的关系及一元二次方程的解可得出 x1+x2=2、x 1x2=1、=2x1+1、 =2x2+1,将其代入 = 中即可得出结论【解答】解:x 1、x 2 是一元二次方程 x22x1=0 的两实数根,x 1+x2=2,x 1x2=1, =2x1+1, =2x2+1, = + = = = =6故答案为:6【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为 是解题的关键16 (3 分)如图,等腰ABC 的底边 BC=20,面积为 120,点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 四川省 泸州市 中考 数学试题 答案 解析
链接地址:https://www.77wenku.com/p-5812.html