2019高考数学二轮复习核心考点特色突破专题15:直线与圆(2)(含解析)
《2019高考数学二轮复习核心考点特色突破专题15:直线与圆(2)(含解析)》由会员分享,可在线阅读,更多相关《2019高考数学二轮复习核心考点特色突破专题15:直线与圆(2)(含解析)(14页珍藏版)》请在七七文库上搜索。
1、专题 15 直线与圆(2)【自主热身,归纳总结】1、 圆心在直线 y4 x上,且与直线 x y10 相切于点 P(3,2)的圆的标准方程为_【答案】: ( x1) 2( y4) 28 解法 1 设圆心为( a,4 a),则有 r ,解得 a1, r2 ,则|a 4a 1|2 a 3 2 4a 2 2 2圆的方程为( x1) 2( y4) 28.解法 2 过点 P(3,2)且垂直于直线 x y10 的直线方程为 x y50,联立方程组Error!解得Error!则圆心坐标为(1,4),半径为 r 2 ,故圆的方程为( x1) 2( y4) 1 3 2 4 2 2 228.2、 在平面直角坐标系
2、xOy中,若直线 ax y20 与圆心为 C的圆( x1) 2( y a)216 相交于 A, B两点,且 ABC为直角三角形,则实数 a的值是_【答案】: 1 【解析】:因为 ABC为直角三角形,所以 BC AC r4,所以圆心 C到直线 AB的距离为 2 ,从而有22 ,解得 a1.|a a 2|a2 1 23、 已知直线 l: x y20 与圆 C: x2 y24 交于 A, B两点,则弦 AB的长度为_. 3【答案】:. 2 3【解析】:圆心 C(0,0)到直线 l的距离 d 1,由垂径定理得|0 30 2|1 3AB2 2 2 ,故弦 AB的长度为 2 .R2 d2 4 1 3 34
3、、已知过点 (5), 的直线 l被圆 截得的弦长为 4,则直线l的方程为 .【答案】: 20x或【解析】: 化成标准式为: .因为截得弦长为 4小于直径故该直线必有两条且圆心到直线的距离为 .当斜率不存在时,:2lx,显然符合要求。当斜率存在时, , ,截得 43k,故直线 l为 .5、在平面直角坐标系 xOy中,若动圆 C上的点都在不等式组 ,表示的平面区域内,则x 3,x 3y 3 0x 3y 3 0)面积最大的圆 C的标准方程为_【答案】: (x1) 2y 24 【解析】:首先由线性约束条件作出可行域,面积最大的圆 C即为可行域三角形的内切圆(如图),由对称性可知,圆 C的圆心在 x轴上
4、,设半径为 r,则圆心 C(3r,0),且它与直线 x y30 相切,所以3r,解得 r2,所以面积最大的圆 C的标准方程为(x1) 2y 24.|3 r 3|1 36、在平面直角坐标系 xOy中,若圆(x2) 2(y2) 21 上存在点 M,使得点 M关于 x轴的对称点 N在直线 kxy30 上,则实数 k的最小值为_7、已知经过点 P 的两个圆 C1, C2都与直线 l1: y x, l2: y2 x相切,则这两圆的圆心距(1,32) 12C1C2_.【答案】 459【解析】:易求直线 C1C2的方程为 y x,设 C1(x1, x1), C2(x2, x2),由题意得 C1(x1, x1
5、)到直线 2x y0 的距离等于 C1P,即 ,整理得|2x1 x1|5 x1 1 2 x1 32 29x 25 x1 0,同理可得 9x 25 x2 0,所以 x1, x2是方程 9x225 x 0 的两个实数根,从21654 2 654 654而 x1 x2 , x1x2 ,所以圆心距 C1C2 |x1 x2| 259 6536 2 2 x1 x2 2 4x1x2 2 .(259)2 46536 4598、在平面直角坐标系 xOy中,已知圆 C: x2( y3) 22,点 A是 x轴上的一个动点, AP, AQ分别切圆 C于 P, Q两点,则线段 PQ长的取值范围是_【答案】 2143 ,
6、 22)【解析】:设 PCA ,所以 PQ2 sin .又 cos , AC3,),所以 cos ,所22AC (0, 23以 cos2 ,sin 2 1cos 2 ,所以 sin ,所以 PQ .(0,29 79, 1) 73, 1) 2143 , 22)与切线有关的问题,一般都不需要求出切点,而是利用直线与圆相切时所得到的直角三角形转解 后 反 思化为点与圆心的距离问题求解 9、在平面直角坐标系 xOy中,已知点 (02)A, ,点 (1)B, , P为圆 2xy上一动点,则PBA的最大值是 【答案】 、2 【解析】1:设 (,)Pxy,则 2y,令123xty,即 ,则动直线 与圆 2x
7、y必须有公共点,所以 ,解得 71t,所以 ,即 0,2PBA, 的最大值是 2.(有了上面的解法,也可设 ,直接通过动直线 与圆2xy有公共点来解决)【解析】2:设 (,)Pxy,则 2y,令 ,则 ,即 ,因为 2xy,所以 ,则动直线 与圆 2xy必须有公共点,所以 ,解得 04,即 0,2PBA, 的最大值是 .【解析】3:因为 P为圆 2xy上一动点,故设 ( R) ,则令,整理为,由 ,解得 04,从而 0,2PBA, 的最大值是 2.10、在平面直角坐标系 xOy中,圆 C的方程为( x1) 2( y1) 29,直线 l: y kx3 与圆 C相交于A, B两点, M为弦 AB上
8、一动点,以 M为圆心,2 为半径的圆与圆 C总有公共点,则实数 k的取值范围为 【答案】 3,4思路分析:根据两个圆的位置关系的判断方法,本题即要求 则可,根据图形的对称性, 当点 位于 AB的中点时存在公共点,则在其它位置时,一定存在公共点,由点到直线的距离不难得到答案。【解析】:由题意得 1MC对于任意的点 恒成立,由图形的对称性可知,只需点 M位于 AB的中点时存在则可。由点 ,到直线 l的距离得 ,解得 34k。 11、已知点 A(0,1), B(1,0), C(t,0),点 D是直线 AC上的动点,若 AD2 BD恒成立,则最小正整数 t的值为_【答案】 4 解法 1 设点 D(x,
9、 y),因为 AD2 BD, A(0,1), B(1,0),所以 2 ,整理x2 y 1 2 x 1 2 y2得 2 2 ,它表示以 为圆心,以 为半径的圆及其外部,又因为直线 AC为(x43) (y 13) 89 (43, 13) 223 y1,即 x ty t0,且点 D是直线 AC上的动点,所以直线 AC与圆相离,即 ,即xt |43 13t t|1 t2 223t24 t10,解得 t2 (t2 舍),所以最小正整数 t的值为 4.3 3解法 2 设点 D(x, y),因为 A(0,1), C(t,0),点 D在直线 AC上,所以有且只有一个实数 ,使 ,所以( x, y1) (t,1
10、),从而 x t , y1 ,即点 D(t ,1 ),AD AC 又因为 AD2 BD恒成立,所以 2 在 R上恒成立, t 2 1 1 2 t 1 2 1 2即 3(t21) 28( t1) 80 在 R上恒成立,令 f( )3( t21) 28( t1) 8,所以 0 恒成立,即 t24 t10,解得 t2 (t2 舍),所以最小整数 t的值为 4.3 3综上所述,满足条件的最小正整数 t的值为 4.12、在平面直角坐标系 xOy中,设直线 y x2 与圆 x2 y2 r2(r0)交于 A, B两点, O为坐标原点,若圆上一点 C满足 ,则实数 r_.OC 54OA 34OB 解法 2 由
11、 ,得 r2 r22 8 .由 ,得 2 r2 r2 |OA OB 2 | 2 OA OB OC 54OA 34OB OC 2516 9r216 158OA OB .由可知 r210,即 r .10解法 3 设 A(x1, y1), B(x2, y2), C(x, y),由 得Error!则OC 54OA 34OB x2 y2 2 2 x y x1x2 x y y1y2.由题意 得 r2 r2 r2(54x1 34x2) (54y1 34y2) 251621 251621 158 9162 9162 158 2516 916(x1x2 y1y2),联立直线 y x2 与圆 x2 y2 r2(r
12、0)的方程,得 2x24 x4 r20.由韦达定理得158x1x2 , x1 x22, y1y2 x1x22 x12 x24 ,代入上式可解得 r .4 r22 4 r22 10解法 4 由 得 ,设 OC与 AB交于点 M,则 A, M, B三点共线由 AMO与 BMOOC 54OA 34OB 12OC 58OA 38OB 互补结合余弦定理可求得 AB r,过点 O作 AB的垂线交 AB于点 D,根据圆心 O到直线 y x2 的距45离为 OD ,得 2( )2 r2,解得 r210,所以 r . 22 2 (25r) 2 10【问题探究,变式训练】例 1、在平面直角坐标系 xOy中,圆 O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 二轮 复习 核心 考点 特色 突破 专题 15 直线 解析
链接地址:https://www.77wenku.com/p-58506.html