2019高考数学二轮复习核心考点特色突破专题12:立体几何中的平行与垂直问题(含解析)
《2019高考数学二轮复习核心考点特色突破专题12:立体几何中的平行与垂直问题(含解析)》由会员分享,可在线阅读,更多相关《2019高考数学二轮复习核心考点特色突破专题12:立体几何中的平行与垂直问题(含解析)(16页珍藏版)》请在七七文库上搜索。
1、专题 12 立体几何中的平行与垂直问题【自主热身,归纳总结】1、 设 , 为互不重合的平面,m,n 是互不重合的直线,给出下列四个命题:若 mn,n,则 m;若 m,n,m,n,则 ;若 ,m,n,则 mn;若 ,m,n,nm,则 n.其中正确命题的序号为_【答案】. 【解析】:对于,直线 m 可能在平面 内,故错误;对于,没有 m 与 n 相交的条件,故错误;对于,m 与 n 也可能异面,故错误2、已知平面 ,直线 m,n,给出下列命题:若 m,n,mn,则 ;若 ,m,n,则 m n;若 m,n,mn,则 ;若 ,m,n,则 mn.其中是真命题的是_(填序号)【答案】 如图,在正方体 AB
2、CDA1B1C1D1中,CD平面 ABC1D1,BC平面 ADC1B1,且 BCCD,又因为平面 ABC1D1与平面 ADC1B1不垂直,故不正确;因为平面 ABCD平面 A1B1C1D1,且 B1C1平面 ABCD,AB平面 A1B1C1D1,但 AB 与 B1C1不平行,故不正确同理,我们以正方体的模型来观察,可得正确3、若 , 是两个相交平面,则在下列命题中,真命题的序号为_(写出所有真命题的序号)若直线 m,则在平面 内,一定不存在与直线 m 平行的直线;若直线 m,则在平面 内,一定存在无数条直线与直线 m 垂直;若直线 m,则在平面 内,不一定存在与直线 m 垂直的直线;若直线 m
3、,则在平面 内,一定存在与直线 m 垂直的直线【答案】:4、已知 , 是两个不同的平面,l,m 是两条不同的直线,l,m.给出下列命题:lm; lm;ml; lm.其中正确的命题是_(填写所有正确命题的序号)【答案】: 【解析】:由 l,得 l,又因为 m,所以 lm;由 l,得 l 或 l,又因为 m,所以 l 与 m 或异面或平行或相交;由 l,m,得 lm.因为 l 只垂直于 内的一条直线 m,所以不能确定 l 是否垂直于 ;由 l,l,得 .因为 m,所以 m. 5、 设 b, c 表示两条直线, 表示两个平面,现给出下列命题:若 b,c,则 bc;若 b,bc,则 c;若 c,则 c
4、;若 c,c,则 .其中正确的命题是_(写出所有正确命题的序号)【答案】: 【解析】:b 和 c 可能异面,故错;可能 c,故错;可能 c,c,故错;根据面面垂直判定 ,故正确6、在所有棱长都相等的三棱锥 P-ABC 中,D,E,F 分别是 AB,BC,CA 的中点,下列四个命题:(1) BC平面 PDF; (2) DF平面 PAE;(3) 平面 PDF平面 ABC; (4) 平面 PDF平面 PAE.其中正确命题的序号为_【答案】:(1)(4)【解析】 由条件可证 BCDF,则 BC平面 PDF,从而(1)正确;因为DF 与 AE 相交,所以(2)错误;取 DF 中点 M(如图),则 PMD
5、F,且可证 PM 与 AE 不垂直,所以(3)错误;而 DMPM,DMAM,则 DM平面 PAE.又 DM平面 PDF,故平面 PDF平面 PAE,所以(4)正确综上所述,正确命题的序号为(1) (4)7、在正方体 ABCD-A1B1C1D1中,点 M,N 分别在 AB1,BC 1上(M,N 不与 B1,C 1重合),且 AMBN,那么AA 1MN;A 1C1MN;MN平面 A1B1C1D1;MN 与 A1C1异面以上 4 个结论中,正确结论的序号是_【答案】:【解析】 过 M 作 MPAB 交 BB1于 P,连接 NP,则平面 MNP平面 A1C1,所以 MN平面 A1B1C1D1,又 AA
6、1平面 A1B1C1D1,所以 AA1MN.当 M 与 B1重合,N 与 C1重合时,则 A1C1与 MN 相交,所以正确【问题探究,变式训练】 :例 1、如图,在直三棱柱 ABCA1B1C1中,ABAC,E 是 BC 的中点,求证:(1) 平面 AB1E平面 B1BCC1;(2) A1C平面 AB1E.【解析】: (1) 在直三棱柱 ABCA1B1C1中,CC 1平面 ABC.因为 AE平面 ABC,所以 CC1AE因为 ABAC,E 为 BC 的中点,所以 AEBC.因为 BC平面 B1BCC1,CC 1平面 B1BCC1,且 BCCC 1C,所以 AE平面 B1BCC1.因为 AE平面
7、AB1E,所以平面 AB1E平面 B1BCC1(2) 如图,连结 A1B,设 A1BAB 1F,连结 EF.在直三棱柱 ABCA1B1C1中,四边形 AA1B1B 为平行四边形,所以 F 为 A1B 的中点又因为 E 是 BC 的中点,所以 EFA 1C因为 EF平面 AB1E,A 1C平面 AB1E,所以 A1C平面 AB1E.【变式 1】 、 【如图,在三棱锥 PABC 中,ABPC,CACB,M 是 AB 的中点,点 N 在棱 PC 上,点 D 是 BN 的中点求证:(1) MD平面 PAC; 又因为 CE平面 BEC,所以 AHCE.(14 分) 【变式 6】 、如图,正三棱柱 ABC
8、A1B1C1的高为 ,其底面边长为 2.已知点 M,N 分别是棱 A1C1,AC 的中点,6点 D 是棱 CC1上靠近 C 的三等分点求证:(1) B1M平面 A1BN;(2) AD平面 A1BN.【解析】: (1) 如图,连结 MN,在正三棱柱 ABCA1B1C1中,四边形 A1ACC1是矩形因为 M,N 分别是棱 A1C1,AC 的中点,所以四边形 A1ANM 也是矩形,从而 MNA 1A.(2 分) 又因为 A1AB 1B,所以 MN B 1B.所以四边形 B1BNM 是平行四边形,则 B1MBN.(4 分) 因为 B1M平面 A1BN,BN平面 A1BN, 所以 B1M平面 A1BN.
9、(6 分) (2) 在正三棱柱 ABCA1B1C1中,AA 1平面 ABC,BN平面 ABC,所以 AA1BN.因为 N 是正三角形 ABC 的边 AC 的中点,所以 ACBN.又因为 A1AACA,A 1A,AC平面 A1ACC1,所以 BN平面 A1ACC1.因为 AD平面 A1ACC1,所以 BNAD.(10 分) 在平面 A1ACC1中,tanA 1NAtanDAC 1,所以A 1NA 与DAC 互余,得 ADA 1N.(12 分) 61 632因为 ADBN,ADA 1N,BNA 1NN,且 A1N,BN平面 A1BN,所以 AD平面 A1BN.(14 分) 【关联 1】 、 如图,
10、正三棱柱 A1B1C1-ABC 中,点 D,E 分别是 A1C,AB 的中点(1) 求证:ED平面 BB1C1C;(2) 若 AB BB1,求证:A 1B平面 B1CE.2【解析】 (1) 连结 AC1,BC 1,因为 AA1C1C 是矩形,D 是 A1C 的中点,所以 D 是 AC1的中点(2 分)在ABC 1中,因为 D,E 分别是 AC1,AB 的中点,所以 DEBC 1.(4 分)因为 DE平面 BB1C1C,BC 1平面 BB1C1C,所以 ED平面 BB1C1C.(6 分)(2) 因为ABC 是正三角形,E 是 AB 的中点,所以 CEAB.又因为正三棱柱 A1B1C1ABC 中,
11、平面 ABC平面 ABB1A1,平面 ABC平面 ABB1A1AB,CE平面 ABC,所以 CE平面 ABB1A1.从而 CEA 1B.(9 分)在矩形 ABB1A1中,因为 ,所以 RtA 1B1BRtB 1BE,A1B1B1B 2 B1BBE从而B 1A1BBB 1E.因此B 1A1BA 1B1EBB 1EA 1B1E90,所以 A1BB 1E.又因为 CE,B 1E平面 B1CE,CEB 1EE,所以 A1B平面 B1CE.(14 分)例 2、如图,在四棱锥 PCD中, , CD,点 为棱 PB的中点(1)若 ,求证: ;(2)求证: E/平面 A【解析】: 证明:(1)取 BD的中点
12、O,连结 CP, ,因为 CD,所以 C为等腰三角形,所以 BD因为 PB,所以 P为等腰三角形,所以 又 ,所以 平面 因为 平面 O,所以 (2)由 E为 PB中点,连 E,则 PD ,又 平面 AD,所以 平面 A 由 ,以及 C,所以 O ,又 CO平面 P,所以 平面 PD 又 ,所以平面 E 平面 A, 而 E平面 ,所以 C 平面 【变式 1】 、如图,在三棱锥 ABCD 中,E,F 分别为棱 BC,CD 上的点,且 BD平面 AEF(1)求证:EF平面 ABD; (2)若 BDCD,AE平面 BCD,求证:平面 AEF平面 ACD【解析】:(1)因为 BD平面 AEF,BD 平
13、面 BCD,平面 AEF平面 BCDEF,所以 BDEF 因为 BD 平面 ABD,EF 平面 ABD,所以 EF平面 ABD (2)因为 AE平面 BCD,CD 平面 BCD,所以 AECD 因为 BDCD,BDEF,所以 CDEF, 又 AEEFE,AE 平面 AEF,EF 平面 AEF,所以 CD平面 AEF 又 CD 平面 ACD,所以 平面 AEF平面 ACD 【变式 2】 、如图,在四棱锥 PABCD中,底面 AB是矩形,点 E在棱 PC上(异于点 , C),平面ABE与棱 PD交于点 F(1)求证: ;(2)若平面 平面 ,求证: FE【变式 3】 、如图,在四棱锥 PABCD中
14、,底面 ABCD 是矩形,平面 PAD平面 ABCD,AP=AD, M,N 分别为棱 PD,PC 的中点A BCDEFP(第 16 题)求证:(1)MN平面 PAB; (2)AM平面 PCD【解析】 (1)因为 M,N 分别为棱 PD,PC 的中点,所以 MNDC, 又因为底面 ABCD 是矩形,所以 ABDC,所以 MNAB 又 AB平面 PAB, MN平面 PAB,所以 MN平面 PAB (2)因为 AP=AD,M 为 PD 的中点,所以 AMPD 因为平面 PAD平面 ABCD, 又平面 PAD平面 ABCD= AD,又因为底面 ABCD 是矩形,所以 CDAD,又 CD平面 ABCD,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 二轮 复习 核心 考点 特色 突破 专题 12 立体几何 中的 平行 垂直 问题 解析
链接地址:https://www.77wenku.com/p-58511.html