人教A版高中数学选修1-2《3.2.1复数代数形式的加减运算及其几何意义》课后训练(含答案)
《人教A版高中数学选修1-2《3.2.1复数代数形式的加减运算及其几何意义》课后训练(含答案)》由会员分享,可在线阅读,更多相关《人教A版高中数学选修1-2《3.2.1复数代数形式的加减运算及其几何意义》课后训练(含答案)(5页珍藏版)》请在七七文库上搜索。
1、3.2.1 复数代数形式的加减运算及其几何意义课后训练案巩固提升一、A 组1.若复数 z 满足 z+(3-4i)=1,则 z 的虚部是( )A.-2 B.4 C.3 D.-4解析: z=1-(3-4i)=-2+4i,所以 z 的虚部是 4.答案: B2.若复数 z1=-2+i,z2=1+2i,则复数 z1-z2 在复平面内对应点所在的象限是( )A.第一象限 B.第二象限C.第三象限 D.第四象限解析: z1-z2=(-2+i)-(1+2i)=(-2-1)+(i-2i)=-3-i,故 z1-z2 对应点的坐标为(-3,- 1),在第三象限.答案: C3.在平行四边形 ABCD 中,对角线 AC
2、 与 BD 相交于点 O,若向量 对应的复数分别是 3+i,-1+3i,则 对应的复数是( )A.2+4i B.-2+4iC.-4+2i D.4-2i解析: 依题意有 ,而(3+ i)-(-1+3i)=4-2i,即 对应的复数为 4-2i,故选 D.答案: D4.已知复数 z 满足|z|-z=3-i,则 z=( )A.- +i B.- -iC.- -i D.-3+4i解析: 设 z=a+bi(a,bR),所以|z|= .因为|z|-z=3- i,所以 -a-bi=3-i,所以所以 z=- +i,选 A.答案: A5.在复平面内,若复数 z 满足|z+1|=|z- i|,则 z 所对应的点 Z
3、的集合构成的图象是( )A.圆 B.直线C.椭圆 D.双曲线解析: 设 z=x+yi(x,yR), |z+1|=|x+yi+1|= ,|z-i|=|x+yi-i|= , . x+y=0. z 的对应点 Z 的集合构成的图象是第二、四象限角平分线.答案: B6.在复平面内,O 是原点, 对应的复数分别为- 2+i,3+2i,1+5i,则 对应的复数为 .解析: -( ),对应的复数为 3+2i-(-2+i+1+5i)=(3+2-1)+(2-1-5)i=4-4i.答案: 4-4i7.已知 f(z+i)=3z-2i,则 f(i)= . 解析: 设 z=a+bi(a,bR),则 fa+(b+1)i=3
4、(a+bi)-2i=3a+(3b-2)i,令 a=0,b=0,则 f(i)=-2i.答案: -2i8.已知 z 是复数,|z|=3,且 z+3i 是纯虚数,则 z= . 解析: 设 z=a+bi(a,bR),则 a+bi+3i=a+(b+3)i 是纯虚数, a=0,b+30,又 |z|=3, b=3, z=3i.答案: 3i9.已知 z1= a+(a+1)i,z2=-3 b+(b+2)i(a,bR ),且 z1-z2=4 ,求复数 z=a+bi.解: z1-z2= +(a-b-1)i,所以 =4 ,a-b-1=0,解得 a=2,b=1,故 z=2+i.10.如图,已知复数 z1=1+2i,z2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 选修 23.2 复数 代数 形式 加减 运算 及其 几何 意义 课后 训练 答案
链接地址:https://www.77wenku.com/p-58900.html