2019年浙江省嘉兴市海宁市中考数学一模试卷(含答案解析)
《2019年浙江省嘉兴市海宁市中考数学一模试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2019年浙江省嘉兴市海宁市中考数学一模试卷(含答案解析)(27页珍藏版)》请在七七文库上搜索。
1、2019 年浙江省嘉兴市海宁市中考数学一模试卷一、选择题(本题有 10 小题,每题 3 分,共 30 分,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1(3 分)已知 ,则 等于( )A B C2 D32(3 分)若 mn,则下列不等式正确的是( )Am+2n+2 Bm2n2 C2m2n Dm 2n 23(3 分)将直角三角形纸片按如图方式折叠,不可能折出( )A直角 B中位线 C菱形 D矩形4(3 分)下列事件中,属于随机事件的是( )A抛出的篮球往下落B在只有白球的袋子里摸出一个红球C地球绕太阳公转D购买 10 张彩票,中一等奖5(3 分)如图,BD,CE 分别是ABC 的高线
2、和角平分线,且相交于点 O若AB AC,A40,则BOE 的度数是( )A60 B55 C50 D406(3 分)统计局信息显示,2018 年嘉兴市农家乐旅游营业收入达到 27.49 亿元,若 2020年全市农家乐旅游营业收入要达到 38 亿元,设平均每年比上一年增长的百分率是 x,则下列方程正确的是( )A27.49+27.49 x238 B27.49(1+2x)38C38(1x) 227.49 D27.49( 1+x) 2387(3 分)如图,一块直角三角板和一张光盘竖放在桌面上,其中 A 是光盘与桌面的切点,BAC 60,光盘的直径是 80cm,则斜边 AB 被光盘截得的线段 AD 长为
3、( )A20 cm B40 cm C80cm D80 cm8(3 分)如图,矩形 ABCD 中,E 是 AB 的中点,F 是 AD 边上的一个动点,已知AB 4,AD2 ,GEF 与AEF 关于直线 EF 成轴对称当点 F 沿 AD 边从点 A 运动到点 D 时,点 G 的运动路径长为( )A2 B4 C2 D9(3 分)希腊人常用小石子在沙滩上摆成各种形状来研究数例如:他们研究过图 1 中的 1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图 2 中的 1,4,9,16这样的数成为正方形数下列数中既是三角形数又是正方形数的是( )A289 B1024 C1225 D
4、137810(3 分)如图,菱形 ABCD 中,点 E,F 分别在边 AB,BC 上将菱形沿 EF 折叠,点B 恰好落在边 AD 上的点 G 处若B45,AE ,BE2 ,则 tanEFG 的值是( )A B C2 D二、填空题(本题有 6 小题,每题 4 分,共 24 分)11(4 分)因式分解:a 22a 12(4 分)已知函数 y2x+1,当 x3 时,y 的取值范围是 13(4 分)用反证法证明命题“三角形中至少有两个锐角”,第一步应假设 14(4 分)小林和小华参加社会实践活动,随机选择“打扫社区卫生”“参加社会调查”其中一项那么两人同时选择“参加社会调查”的概率是 15(4 分)如
5、图,将正方形 ABCD 剪成左图所示的四块,恰好能拼成右图所示的矩形若 EC1,则 BE 16(4 分)已知实数 a,b 满足 a+2b3,abx2若 y(a2b) 2,则 y 关于 x 的函数解析式是 三、解答题(本题有 8 小题,第 1719 题每题 6 分,第 20、21 题每题 8 分,第 22、23 题每题 10 分,第 24 题 12 分,共 66 分)17(6 分)(1)计算: +|3|( 1) 0(2)解分式方程:18(6 分)先化简,后求值: ,其中 x 219(6 分)如图,已知点 O 是正六边形 ABCDEF 的对称中心,G,H 分别是 AF,BC 上的点,且 AGBH(
6、1)求FAB 的度数;(2)求证:OGOH20(8 分)在学校组织的“学习强国”阅读知识竞赛中,每班参加比赛的人数相同,成绩分为 A,B , C,D 四个等级,其中相应等级的得分依次记为 100 分,90 分,80 分和70 分年级组长张老师将 901 班和 902 班的成绩进行整理并绘制成如下的统计图:(1)在本次竞赛中,902 班 C 级及以上的人数有多少?(2)请你将下面的表格补充完整:平均数(分) 中位数(分) 众数(分) B 级及以上人数901 班 87.6 90 18902 班 87.6 100 (3)请你对 901 班和 902 班在本次竞赛中的成绩进行比较21(8 分)如图,小
7、聪和小明在校园内测量钟楼 MN 的高度小聪在 A 处测得钟楼顶端N 的仰角为 45,小明在 B 处测得钟楼顶端 N 的仰角为 60,并测得 A,B 两点之间的距离为 27.3 米,已知点 A,M,B 依次在同一直线上(1)求钟楼 MN 的高度,(结果精确到 0.1 米)(2)因为要举办艺术节,学校在钟楼顶端 N 处拉了一条宣传竖幅,并固定在地面上的C 处(点 C 在线段 AM 上)小聪测得点 C 处的仰角NCM 等于 75,小明测得点C,M 之间的距离约为 5 米,若小聪的仰角数据正确,问小明测得的数据“5 米”是否正确?为什么?(参考数据: 1.41, 1.73)22(10 分)如图,已知点
8、 A(a,m )在反比例函数 y 的图象上,并且 a0,作AB x 轴于点 B,连结 OA(1)当 a2 时,求线段 AB 的长(2)在(1)条件下,在 x 轴负半轴上取一点 P,将线段 AB 绕点 P 按顺时针旋转 90得到 CD若点 B 的对应点 D 落在反比例函数 y 的图象上,求点 C 的坐标(3)将线段 OA 绕点 O 旋转,当点 A 落在反比例函数 y (x0)图象上的F(d,n)处时,请直接写出 m 和 n 之间的数量关系23(10 分)在水平的地面 BD 上有两根与地面垂直且长度相等的电线杆 AB,CD,以点B 为坐标原点,直线 BD 为 x 轴建立平面直角坐标系,得到图 1已
9、知电线杆之间的电线可近似地看成抛物线 y x2 x+30(1)求电线杆 AB 和线段 BD 的长(2)因实际需要,电力公司在距离 AB 为 30 米处增设了一根电线杆 MN(如图 2),左边抛物线 F1 的最低点离 MN 为 10 米,离地面 18 米,求 MN 的长(3)将电线杆 MN 的长度变为 30 米,调整电线杆 MN 在线段 BD 上的位置,使右边抛物线 F2 的二次项系数始终是 ,设电线杆 MN 距离 AB 为 m 米,抛物线 F2 的最低点离地面的距离为 k 米,当 20k25 时,求 m 的取值范围24(12 分)定义:从三角形的一个顶点引出一条射线与对边相交,顶点与交点之间的
10、线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中有一个与原三角形相似,那么我们称这条线段为原三角形的相似线,记此小三角形与原三角形的相似比为k(1)【理解】如图 1,ABC 中,已知 D 是 AC 边上一点,CBDA求证:BD是ABC 的相似线;(2)【探究】如图 2,ABC 中,AB4,BC 2,AC 2 请用尺规作图法在平面内找一点 D、使 BC 是以 A、D 为其中两个顶点的三角形的相似线,并直接写出 k 的值,(提醒:保留作图痕迹,在确认无误后用黑色签字笔将作图痕迹描黑)(3)【应用】如图 3,扇形 AOB 中,AOB90,AO OB2,C,D 分别是OA,OB 的中点,P
11、 是弧 AB 上的一个动点,求 PC+2PD 的最小值2019 年浙江省嘉兴市海宁市中考数学一模试卷参考答案与试题解析一、选择题(本题有 10 小题,每题 3 分,共 30 分,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1(3 分)已知 ,则 等于( )A B C2 D3【分析】由题干可得 y2x ,代入 计算即可求解【解答】解: ,y2x, 故选:A【点评】本题考查了比例的基本性质:两内项之积等于两外项之积即若 ,则adbc,比较简单2(3 分)若 mn,则下列不等式正确的是( )Am+2n+2 Bm2n2 C2m2n Dm 2n 2【分析】根据不等式的性质判断即可【解答】解:
12、mn,m+2 n+2,m2n2, 2m 2n,故选:C【点评】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变3(3 分)将直角三角形纸片按如图方式折叠,不可能折出( )A直角 B中位线 C菱形 D矩形【分析】由折叠的性质可求解【解答】解:当直角三角形沿斜边中点和直角边中点所在直线折叠,可以得到图形有直角,中位线,矩形,不可能折出菱形故选:C【点评】本题考查了翻折变换,三角形中位线定理,菱形的性质,矩形的性质,熟练运用折叠性质是本题的关键4(3 分)下列事件中,属于随机事件的是( )A抛出的篮球往下落B在只有白球的
13、袋子里摸出一个红球C地球绕太阳公转D购买 10 张彩票,中一等奖【分析】随机事件就是可能发生,也可能不发生的事件,根据定义即可判断【解答】解:A、抛出的篮球会落下是必然事件,故本选项错误;B、从装有白球的袋里摸出红球,是不可能事件,故本选项错误;C、地球绕太阳公转,是必然事件,故本选项错误;D、购买 10 张彩票,中一等奖是随机事件,故本选正确故选:D【点评】本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单5(3 分)如图,BD,CE 分别是ABC 的高线和角平分线,且相交于点 O若AB AC,A40,则BOE 的度
14、数是( )A60 B55 C50 D40【分析】利用等腰三角形的性质以及角平分线的定义求出DCO 即可解决问题【解答】解:ABAC,A40,ABCACB70,CE 平分ACB,ACE ACB35,BDAC,ODC90,BOECOD9035 55,故选:B【点评】本题考查等腰三角形的性质,三角形的内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识,属于中考常考题型6(3 分)统计局信息显示,2018 年嘉兴市农家乐旅游营业收入达到 27.49 亿元,若 2020年全市农家乐旅游营业收入要达到 38 亿元,设平均每年比上一年增长的百分率是 x,则下列方程正确的是( )A27
15、.49+27.49 x238 B27.49(1+2x)38C38(1x) 227.49 D27.49( 1+x) 238【分析】首先根据题意可得 2019 年的营业收入2018 年营业收入(1+增长率),2020 年营业收入2019 年营业收入(1+增长率),由此可得方程 27.49(1+x)238【解答】解:设平均每年比上一年增长的百分率是 x,根据题意得:27.49(1+x) 238故选:D【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:若变化前的量为 a,变化后的量为 b,平均变化率为 x,则经过两次变化后的数量关系为 a(1x) 2b7(3 分)如图
16、,一块直角三角板和一张光盘竖放在桌面上,其中 A 是光盘与桌面的切点,BAC 60,光盘的直径是 80cm,则斜边 AB 被光盘截得的线段 AD 长为( )A20 cm B40 cm C80cm D80 cm【分析】连接 DO,AO,过 O 作 OEAD 交 AD 于点 E,由 A 是光盘与桌面的切点,求出OAE30,E 是 AD 的中点,在 RtAEO 中求出 AE,即可求 AD;【解答】解:连接 DO,AO,过 O 作 OEAD 交 AD 于点 E,BAC60,A 是光盘与桌面的切点,OAC90,OAE30,OAOD ,E 是 AD 的中点,在 Rt AEO 中,AO80cmAE40 cm
17、,AD80 cm;故选:D【点评】本题考查直角三角形的特殊三角函数值,圆的切线性质,等腰三角形的性质;能够将所求的边构造直角三角形进行求解是解题的关键8(3 分)如图,矩形 ABCD 中,E 是 AB 的中点,F 是 AD 边上的一个动点,已知AB 4,AD2 ,GEF 与AEF 关于直线 EF 成轴对称当点 F 沿 AD 边从点 A 运动到点 D 时,点 G 的运动路径长为( )A2 B4 C2 D【分析】由轴对称性质可知,GEAE2 是定长,故点 G 的运动路径为以 E 为圆心、AE 长为半径的圆弧上,圆弧的最大角度即点 F 到达中点 D 时,AEG 的度数利用AD、AE 的长可求 tan
18、AED 的值,求得AED 并进而求得 AEG 为特殊角再代入弧长公式即求出点 G 的运动路径长【解答】解:矩形 ABCD 中,AB4,E 是 AB 的中点AE AB2GEF 与AEF 关于直线 EF 成轴对称GEAE2,GEFAEFG 在以 E 为圆心,AE 长为半径的圆弧上运动如图,当点 F 与点 D 重合时, ADtanAEDAED60AEG2AED 120G 运动路径长为:22 故选:D【点评】本题考查了轴对称性质,圆的定义,三角函数,圆弧计算解题关键是由轴对称性质得到 GEAE 2 为定值,得到点 G 的运动轨迹为圆弧9(3 分)希腊人常用小石子在沙滩上摆成各种形状来研究数例如:他们研
19、究过图 1 中的 1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图 2 中的 1,4,9,16这样的数成为正方形数下列数中既是三角形数又是正方形数的是( )A289 B1024 C1225 D1378【分析】由题意可知:三角形数的第 n 个为 1+2+3+4+n n(n+1),正方形数的第 n 个为 n2,由此逐一验证得出答案即可【解答】解:由于三角形数的第 n 个为 1+2+3+4+n n(n+1),正方形数的第 n个为 n2,A、 n(n+1) 289 无整数解,不合题意;B、 n(n+1) 1024,不合题意;C、 n(n+1)1225,解得 n49,符合题意
20、;D、 n(n+1)1378,无整数解,不合题意故选:C【点评】此题考查图形的变化规律,找出图形之间的联系,利用数字之间的运算规律,解决问题10(3 分)如图,菱形 ABCD 中,点 E,F 分别在边 AB,BC 上将菱形沿 EF 折叠,点B 恰好落在边 AD 上的点 G 处若B45,AE ,BE2 ,则 tanEFG 的值是( )A B C2 D【分析】过 E 作 PHBC 于 P,交 DA 延长线于 H,作 GMBC 于 M,则PHAH,GMPH,GHPM,由折叠的性质得:GEAE2 ,GFBF ,EFG EFB ,由平行线的性质得出 HAEB45,得出BPE 和AEH 是等腰直角三角形,
21、得出BPEP BE2,AHEH AE1,GM HP 3,在 RtGEH 中,由勾股定理求出 GH ,得出 PMGH ,设 PFx,则 FM x,GFBFx+2,在RtGFM 中,由勾股定理得出方程,解方程求出 PF2 4,再由三角函数定义即可得出结果【解答】解:过 E 作 PHBC 于 P,交 DA 延长线于 H,作 GMBC 于 M,如图所示:则 PHAH ,GMPH,GHPM,由折叠的性质得:GEAE 2 ,GF BF,EFG EFB,四边形 ABCD 是菱形,ADBC,HAEB45,BPE 和AEH 是等腰直角三角形,BPEP BE2,AHEH AE1,GM HP2+13,在 Rt GE
22、H 中,由勾股定理得:1 2+GH2(2 ) 2,解得:GH (负值舍去),GH ,PMGH ,设 PFx,则 FM x ,GF BF x+2,在 Rt GFM 中,由勾股定理得:3 2+( x) 2(x+2) 2,解得:x2 4,PF2 4,tanEFGtanEFB ;故选:B【点评】本题考查了翻折变换的性质、菱形的性质等腰直角三角形的判定与性质、勾股定理、三角函数等知识;熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键二、填空题(本题有 6 小题,每题 4 分,共 24 分)11(4 分)因式分解:a 22a a(a2) 【分析】先确定公因式是 a,然后提取公因式即可【解答】解:a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 浙江省 嘉兴市 海宁市 中考 数学 试卷 答案 解析
链接地址:https://www.77wenku.com/p-63009.html