2018-2019学年福建省龙岩市永定区、长汀县联考八年级(下)期中数学试卷(含答案解析)
《2018-2019学年福建省龙岩市永定区、长汀县联考八年级(下)期中数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2018-2019学年福建省龙岩市永定区、长汀县联考八年级(下)期中数学试卷(含答案解析)(24页珍藏版)》请在七七文库上搜索。
1、2018-2019 学年福建省龙岩市永定区、长汀县联考八年级(下)期中数学试卷一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)1(4 分)下列式子是最简二次根式的是( )A B C D2(4 分)若 在实数范围内有意义,则 x 的取值范围在数轴上表示正确的是( )A BC D3(4 分)由下列条件不能判定ABC 为直角三角形的是( )AA+ BC BA:B:C1:3:2Ca2,b3,c 4 D(b+c)(bc )a 24(4 分)如图,在 22 的正方形网格中,每个小正方形边长为 1,点 A,B,C 均为格点,以点 A 为圆心,AB 长为半径作弧,交格线于点 D,则 CD 的长
2、为( )A B C D25(4 分)如图,若12,ADBC,则四边形 ABCD 是( )A平行四边形 B菱形C正方形 D以上说法都不对6(4 分)下列说法正确的有几个( )对角线互相平分的四边形是平行四边形; 对角线互相垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形; 对角线相等的平行四边形是矩形A1 个 B2 个 C3 个 D4 个7(4 分)如图所示,四边形 ABCD 为矩形,点 O 为对角线的交点,BOC120,AE BO 交 BO 于点 E,AB 4,则 BE 等于( )A4 B3 C2 D18(4 分)如图,在MON 的两边上分别截取 OA、OB,使 OAOB;分别以点
3、 A、B 为圆心,OA 长为半径作弧,两弧交于点 C;连接 AC、BC、AB 、OC若 AB2cm,四边形 OACB 的面积为 4cm2则 OC 的长为( )A2 B3 C4 D59(4 分)在正方形 ABCD 的边 BC 的延长线上取一点 E,使 CEAC ,AE 与 CD 交于点F,那么 AFC 的度数为( )A105 B112.5 C135 D12010(4 分)如图,已知直线 l1l 2l 3l 4,相邻两条平行线间的距离都是 1,正方形ABCD 的四个顶点分别在四条直线上,则正方形 ABCD 的面积为( )A B C3 D5二、填空题(本大题共 6 小题,每小题 4 分,共 24 分
4、)11(4 分)计算: 12(4 分)若 x0,则 的结果是 13(4 分)如图,在ABCD 中,AEBC 于点 E,AFCD 于点 F若EAF55,则B 14(4 分)已知直角三角形两边直角边长为 1 和 ,则此直角三角形斜边上的中线长是 15(4 分)如图,已知正方形 ABCD 的边长为 5,点 E、F 分别在 AD、DC 上,AE DF2,BE 与 AF 相交于点 G,点 H 为 BF 的中点,连接 GH,则 GH 的长为 16(4 分)如图,在ABC 中,C90,AC8,BC6,P 是 AB 边上的一个动点(异于 A、B 两点),过点 P 分别作 AC、BC 边的垂线,垂足分别为 M、
5、N,则 MN 最小值是 三、解答题(本大题共 9 小题,共 86 分)17(8 分)计算: 18(8 分)计算:(2+ )(2 )+( ) 19(8 分)如图,在每个小正方形是边长为 1 的网格中,A,B,C 均为格点()仅用不带刻度的直尺作 BDAC,垂足为 D,并简要说明道理;()连接 AB,求ABC 的周长20(8 分)在甲村至乙村间有一条公路,在 C 处需要爆破,已知点 C 与公路上的停靠站A 的距离为 300 米,与公路上的另一停靠站 B 的距离为 400 米,且 CACB,如图所示,为了安全起见,爆破点 C 周围半径 250 米范围内不得进入,问:在进行爆破时,公路AB 段是否有危
6、险?是否需要暂时封锁?请用你学过的知识加以解答21(8 分)如图,在平行四边形 ABCD 中,E、F、为对角线 BD 上的两点,且BAEDCF求证:AECF22(10 分)已知,如图,在ABC 中,D 是 BC 的中点,DEBC,垂足为 D,交 AB 于点 E,且 BE2EA 2AC 2,求证: A 90若 DE3, BD4,求 AE 的长23(10 分)已知矩形 ABCD 中,E 是 AD 边上的一个动点,点 F,G ,H 分别是BC,BE ,CE 的中点(1)求证:BGFFHC;(2)设 ADa,当四边形 EGFH 是正方形时,求矩形 ABCD 的面积24(12 分)定义:我们把对角线相等
7、的四边形叫做和美四边形(1)请举出一种你所学过的特殊四边形中是和美四边形的例子(2)如图 1,E,F,G,H 分别是四边形 ABCD 的边 AB,BC ,CD,DA 的中点,已知四边形 EFGH 是菱形,求证:四边形 ABCD 是和美四边形;(3)如图 2,四边形 ABCD 是和美四边形,对角线 AC,BD 相交于 O,AOB60,E、F 分别是 AD、BC 的中点,请探索 EF 与 AC 之间的数量关系,并证明你的结论25(14 分)如图所示,在等边三角形 ABC 中,BC 8cm,射线 AGBC,点 E 从点 A出发沿射线 AG 以 1cm/s 的速度运动,同时点 F 从点 B 出发沿射线
8、 BC 以 2cm/s 的速度运动,设运动时间为 t(s)(1)连接 EF,当 EF 经过 AC 边的中点 D 时,求证:四边形 AFCE 是平行四边形;(2)填空:当 t 为 s 时,四边形 ACFE 是菱形;当 t 为 s 时,ACE 的面积是ACF 的面积的 2 倍2018-2019 学年福建省龙岩市永定区、长汀县联考八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)1(4 分)下列式子是最简二次根式的是( )A B C D【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式我们把满足上
9、述两个条件的二次根式,叫做最简二次根式进行分析即可【解答】解:A、 不是最简二次根式,故此选项错误;B、 不是最简二次根式,故此选项错误;C、 不是最简二次根式,故此选项错误;D、 是最简二次根式,故此选项正确;故选:D【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式2(4 分)若 在实数范围内有意义,则 x 的取值范围在数轴上表示正确的是( )A BC D【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可【解答】解:由题意得 x+20,解得 x2故选
10、:D【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键3(4 分)由下列条件不能判定ABC 为直角三角形的是( )AA+ BC BA:B:C1:3:2Ca2,b3,c 4 D(b+c)(bc )a 2【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是 90即可【解答】解:A、A+BC,可得C 90,是直角三角形,错误;B、A:B: C 1:3:2,可得C90,是直角三角形,错误;C、2 2+324 2,故不能判定是直角三角形,正确;D、(b+c)(bc)a 2,b 2c 2a 2,即 a2+c2b 2,故是直角三角形,错误;故选
11、:C【点评】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可4(4 分)如图,在 22 的正方形网格中,每个小正方形边长为 1,点 A,B,C 均为格点,以点 A 为圆心,AB 长为半径作弧,交格线于点 D,则 CD 的长为( )A B C D2【分析】由勾股定理求出 DE,即可得出 CD 的长【解答】解:连接 AD,如图所示:ADAB2,DE ,CD2 ;故选:D【点评】本题考查了勾股定理;由勾股定理求出 DE 是解决问题的关键5(4 分)如图,若12,ADBC,则四边形 ABCD 是( )A平行四边形 B菱形C正方形 D以上
12、说法都不对【分析】根据题意判断出ACDCAB,故可得出34,由此可得出结论【解答】解:在ACD 与CAB 中, ,ACDCAB,34,ABCD,四边形 ABCD 是平行四边形故选:A【点评】本题考查的是平行四边形的判定,熟知两组对边分别平行的四边形是平行四边形是解答此题的关键6(4 分)下列说法正确的有几个( )对角线互相平分的四边形是平行四边形; 对角线互相垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形; 对角线相等的平行四边形是矩形A1 个 B2 个 C3 个 D4 个【分析】由平行四边形、矩形、菱形以及正方形的判定定理进行判断即可【解答】解:对角线互相平分的四边形是平行四边
13、形,故正确;对角线互相垂直平分的四边形是菱形,故错误;对角线互相垂直且相等的平行四边形是正方形,故正确;对角线相等的平行四边形是矩形,故正确;故选:C【点评】本题考查了正方形、平行四边形、菱形以及矩形的判定定理注意菱形与正方形的区别与联系、矩形与正方形的区别与联系7(4 分)如图所示,四边形 ABCD 为矩形,点 O 为对角线的交点,BOC120,AE BO 交 BO 于点 E,AB 4,则 BE 等于( )A4 B3 C2 D1【分析】由矩形的性质得出 OAOB ,证出AOB 是等边三角形,得出 OBAB4,再由等边三角形的三线合一性质得出 BE OB2 即可【解答】解:四边形 ABCD 是
14、矩形,OA AC,OB BD,ACBD,OAOB ,BOC120,AOB60,AOB 是等边三角形,OBAB4,AEBO ,BE OB2故选:C【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键8(4 分)如图,在MON 的两边上分别截取 OA、OB,使 OAOB;分别以点 A、B 为圆心,OA 长为半径作弧,两弧交于点 C;连接 AC、BC、AB 、OC若 AB2cm,四边形 OACB 的面积为 4cm2则 OC 的长为( )A2 B3 C4 D5【分析】根据作法判定出四边形 OACB 是菱形,再根据菱形的面积等于对角线乘积的一半
15、列式计算即可得解【解答】解:根据作图,AC BC OA,OAOB ,OAOB BC AC,四边形 OACB 是菱形,AB2cm,四边形 OACB 的面积为 4cm2, ABOC 2OC4,解得 OC4cm 故选:C【点评】本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形 OACB 是菱形是解题的关键9(4 分)在正方形 ABCD 的边 BC 的延长线上取一点 E,使 CEAC ,AE 与 CD 交于点F,那么 AFC 的度数为( )A105 B112.5 C135 D120【分析】根据正方形的性质,得ACB245,根据等腰三角形的性质和三角形的外角的性质,得1E2
16、2.5,从而根据三角形的内角和定理进行计算【解答】解:四边形 ABCD 是正方形,ACB245ACCE,1E22.5AFC1804522.5112.5故选:B【点评】此题综合运用了正方形的性质、三角形的内角和定理及其推论、等腰三角形的性质10(4 分)如图,已知直线 l1l 2l 3l 4,相邻两条平行线间的距离都是 1,正方形ABCD 的四个顶点分别在四条直线上,则正方形 ABCD 的面积为( )A B C3 D5【分析】过 D 点作直线 EF 与平行线垂直,与 l1 交于点 E,与 l4 交于点 F易证ADEDFC,得 CF1,DF2根据勾股定理可求 CD2 得正方形的面积【解答】解:作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版
链接地址:https://www.77wenku.com/p-63143.html