【全国Ⅱ卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)
《【全国Ⅱ卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)》由会员分享,可在线阅读,更多相关《【全国Ⅱ卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)(20页珍藏版)》请在七七文库上搜索。
1、绝密启用前2019 年普通高等学校招生全国统一考试文科数学本试卷共 5 页。考试结束后,将本试卷和答题卡一并交回注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共 12 小题,每小题 5 分,
2、共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合 , ,则 AB=|1Ax|2BxA. (1,+) B. (,2)C. (1,2) D. 【答案】C【解析】【分析】本题借助于数轴,根据交集的定义可得【详解】由题知, ,故选 C(1,2)AB【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查易错点是理解集合的概念及交集概念有误,不能借助数轴解题2.设 z=i(2+i),则 =zA. 1+2i B. 1+2iC. 12i D. 12i【答案】D【解析】【分析】本题根据复数的乘法运算法则先求得 ,然后根据共轭复数的概念,写出 z z【详解】 ,2i()
3、i1iz所以 ,选 D12【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查理解概念,准确计算,是解答此类问题的基本要求部分考生易出现理解性错误3.已知向量 a=(2,3) ,b=(3,2) ,则| ab|=A. B. 22C. 5 D. 50【答案】A【解析】【分析】本题先计算 ,再根据模的概念求出 ab|ab【详解】由已知, ,(2,3),(1,)所以 ,|(1)故选 A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错4.生物实验室有 5
4、只兔子,其中只有 3 只测量过某项指标,若从这 5 只兔子中随机取出 3 只,则恰有 2 只测量过该指标的概率为A. B. 23 35C. D. 51【答案】B【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解【详解】设其中做过测试的 3 只兔子为 ,剩余的 2 只为 ,则从这 5 只中任取 3 只的所有取法有,abc,AB, 共 10,abcAabBcABc,b,c,bAB种其中恰有 2 只做过测试的取法有 共 6 种,,a所以恰有 2 只做过测试的概率为 ,选 B63105【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、
5、基本计算能力的考查应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法” ,可最大限度的避免出错5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A. 甲、乙、丙 B. 乙、甲、丙C. 丙、乙、甲 D. 甲、丙、乙【答案】A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故 3 人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若
6、丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选 A【点睛】本题将数学知识与时政结合,主要考查推理判断能力题目有一定难度,注重了基础知识、逻辑推理能力的考查6.设 f(x)为奇函数,且当 x0 时,f (x)= ,则当 x 0,代入可得 ,结合奇偶性可得 .()fx()fx【详解】 是奇函数, 当 时, , ,得()f0201f x0()e1()xff故选 D()e1xf【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养采取代换法,利用转化与化归的思想解题7.设 , 为两个平面,则 的充要条件是A. 内有无数条直
7、线与 平行B. 内有两条相交直线与 平行C. , 平行于同一条直线D. , 垂直于同一平面【答案】B【解析】【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知: 内两条相交直线都与 平行是 的充分条件,由面面平行性质/定理知,若 ,则 内任意一条直线都与 平行,所以 内两条相交直线都与 平行是 的必/ /要条件,故选 B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若 ,则 ”此类的错误,/aba/8.若 x1= ,x 2= 是函数 f(x
8、)= ( 0)两个相邻的极值点,则 =43sinA. 2 B. 32C. 1 D. 1【答案】A【解析】【分析】从极值点可得函数 的 周期,结合周期公式可得 .【详解】由题意知, 的周期 ,得 故选 A()sinfx23()4T2【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养采取公式法,利用方程思想解题9.若抛物线 y2=2px(p0)的焦点是椭圆 的一个焦点,则 p=231xypA. 2 B. 3C. 4 D. 8【答案】D【解析】【分析】利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如pp时,抛物线焦点为(1,0)
9、 ,椭圆焦点为(2,0) ,排除 A,同样可排除 B,C,故选 D2p【详解】因为抛物线 的焦点 是椭圆 的一个焦点,所以 ,2()ypx(,)p231xyp23()p解得 ,故选 D8p【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养10.曲线 y=2sinx+cosx 在点(,1)处的切线方程为A. B. 10210xyC. D. 2xy 【答案】C【解析】【分析】先判定点 是否为切点,再利用导数的几何意义求解.(,1)【详解】当 时, ,即点 在曲线 上x2sinco1y(,)2sincoyx则 在点 处的切线方程为2cosi,ysi2,x si(,1),即 故选
10、C(1)()x0y【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养采取导数法,利用函数与方程思想解题学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程11.已知 a(0, ) ,2sin2=cos2+1,则 sin=2A. B. 15 5C. D. 3 25【答案】B【解析】【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为 1 关系得出答案【详解】 , 2sincos2124sincos.0,cos02,又 , ,又 ,si0,i22sis115in,i
11、5sin,故选 B5n【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉12.设 F 为双曲线 C: (a0,b0)的右焦点, O 为坐标原点,以 OF 为直径的圆与圆21xyx2+y2=a2 交于 P、Q 两点若 |PQ|=|OF|,则 C 的离心率为A. B. 3C. 2 D. 5【答案】A【解析】【分析】准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 关系,可求双曲线的离心率【详解】设 与 轴交于点 ,由对称性可知
12、 轴,PQxAPQx又 , 为以 为直径的圆的半径,|OFc|,2cOF为圆心 A|,又 点在圆 上,,2cP22xya,即 24a22,cce,故选 Ae【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来二、填空题:本题共 4 小题,每小题 5 分,共 20 分13.若变量 x,y 满足约束条件 则 z=3xy 的最大值是_.2360xy,【答案】9.【解析】【分析】作出可行域,平移 找到目标函数取到最大值的点,求出点的坐
13、标,代入目标函数可得 .30xy【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形 ABC 区域,根据直线 中的 表示纵截距的相反数,当直线30xyzz过点 时, 取最大值为 93zxy3,0C(z【点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养采取图解法,利用数形结合思想解题搞不清楚线性目标函数 的 几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值14.我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有 10 个车次的正点率为 0.97,有20 个车次的正点率为 0.98,有 10 个车次的正点率为
14、0.99,则经停该站高铁列车所有车次的平均正点率的估计值为_.【答案】098.【解析】【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题【详解】由题意得,经停该高铁站的列车正点数约为 ,其中高铁个10.9720.81.93.2数为 10+20+10=40,所以该站所有高铁平均正点率约为 3.4【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养侧重统计数据的概率估算,难度不大易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值15. 的内角 A,B,C 的对边分别为 a,b,c .已知 bsinA+acosB=0,则 B=_.
15、V【答案】 .34【解析】【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得 , 得sinsico0BAB(,)(0,)ABsin0,A,即 , 故选 Dsinco0Bta13.4【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养采取定理法,利用转化与化归思想解题忽视三角形内角的范围致误,三角形内角均在 范围内,化边为角,结合三角函(0,)数的恒等变化求角16.中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1).半正多面体是由两种或两种以上的正多边形围成的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 2019 普通高校 招生 统一 考试 数学 文科 试卷 答案 解析
链接地址:https://www.77wenku.com/p-66249.html