2020版中考数学总复习优化设计:第19讲-矩形菱形正方形-讲练ppt课件(含答案)
《2020版中考数学总复习优化设计:第19讲-矩形菱形正方形-讲练ppt课件(含答案)》由会员分享,可在线阅读,更多相关《2020版中考数学总复习优化设计:第19讲-矩形菱形正方形-讲练ppt课件(含答案)(24页珍藏版)》请在七七文库上搜索。
1、第19讲 矩形、菱形、正方形,考法1,考法2,考法3,考法4,矩形的性质和判定 明晰矩形与一般平行四边形的区别和联系是解答此类问题的突破口. 例1(2017湖北鄂州)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E.(1)求证:AFECDE; (2)若AB=4,BC=8,求图中阴影部分的面积.,考法1,考法2,考法3,考法4,(1)证明:在矩形ABCD中, AB=CD,D=B=90, 又将矩形ABCD沿对角线AC翻折, AB=AF=CD, F=D=90,AEF=DEC, AFECDE. (2)解:设EF=ED=x,则AE=8-x, 在直角三角形AEF中,由勾股定理得, (
2、8-x)2=x2+42 解得x=3. S阴影=SADC-SEDC.,考法1,考法2,考法3,考法4,方法点拨(1)利用AAS证全等;(2)根据勾股定理列方程求EF,计算面积.,考法1,考法2,考法3,考法4,例2(2018山东青岛)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF; (2)若AG=AB,BCD=120,判断四边形ACDF的形状,并证明你的结论. 分析:(1)只要证明AB=CD,AF=CD即可解决问题; (2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即
3、可;,考法1,考法2,考法3,考法4,(1)证明:四边形ABCD是平行四边形, ABCD,AB=CD,AFC=DCG, GA=GD,AGF=CGD, AGFDGC,AF=CD,AB=AF. (2)解:结论:四边形ACDF是矩形. 理由:AF=CD,AFCD, 四边形ACDF是平行四边形, 四边形ABCD是平行四边形, BAD=BCD=120, FAG=60,AB=AG=AF,AFG是等边三角形,AG=GF, AGFDGC,FG=CG,AG=GD, AD=CF,四边形ACDF是矩形.,考法1,考法2,考法3,考法4,方法点拨此题主要考查了矩形的性质以及判定,要证明两直线平行和两线段相等、两角相等
4、,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.,考法1,考法2,考法3,考法4,菱形的性质 1.明晰菱形与一般平行四边形的区别和联系. 2.涉及对角线时要考虑勾股定理.,考法1,考法2,考法3,考法4,例3(2018湖北随州)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,AOC=60,若将菱形OABC绕点O顺时针旋转75,得到四边形OABC,则点B的对应点B的坐标为 .,考法1,考法2,考法3,考法4,解析:作BHx轴于H点,连接OB,OB,如图, 四边形OABC为菱形, OB平分A
5、OC,AOB=30, 菱形OABC绕原点O顺时针旋转75至第四象限OABC的位置, BOB=75,OB=OB=2 , AOB=BOB-AOB=45,考法1,考法2,考法3,考法4,方法点拨本题考查了数形结合思想和坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30,45,60,90,180.,考法1,考法2,考法3,考法4,菱形的判定 证明菱形的常用思路:“平行四边形+一组邻边相等”或“平行四边形+对角线互相垂直”. 例4(2018江苏扬州)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 中考 数学 复习 优化 设计 19 矩形 菱形 正方形 ppt 课件 答案
链接地址:https://www.77wenku.com/p-67369.html