2019年高考数学(含解析)之导数的热点问题
《2019年高考数学(含解析)之导数的热点问题》由会员分享,可在线阅读,更多相关《2019年高考数学(含解析)之导数的热点问题(11页珍藏版)》请在七七文库上搜索。
1、导数的热点问题1在某次水下科研考察活动中 ,需要潜水员潜入水深为 60 米的水底进行作业,根据以往经验,潜水员下潜的平均速度为 v(米/单位时间),每单位时间的用氧量为 31( 升) ,(v10)在水底作业 10 个单位时间,每单位时间用氧量为 0.9( 升 ),返回水面的平均速度为 (米/ 单v2位时间) ,每单位时间用氧量为 1.5(升) ,记该潜水员在此次考察活动中的总用氧 量为 y(升)(1)求 y 关于 v 的函数关系式;(2)若 cv15(c0),求当下潜速度 v 取什么值时,总用氧量最 少来源:Z*xx*k.Com2已知函数 f(x)x .ax(1)判断函数 f(x)的单调性;学
2、 0 科来源:学* 科*Z*X*X*K(2)设函数 g(x)ln x1 ,证明:当 x(0,)且 a0 时,f (x)g(x)3已知函数 f(x)ln x,g(x) xm(mR)(1)若 f(x)g(x)恒成立,求实数 m 的取值范围;(2)已知 x1,x 2 是函数 F(x)f (x)g(x )的两个零点,且 x10,e2.7)1 xax(1)当 a 1 时,求函数 f(x)在(1,f (1)点处的切线方程;(2)若函数 f(x)在区间2,)上为增函数,求实数 a 的取值范围;来源:学|科|Z|X|X|K(3)求证:对于任意大于 1 的正整数 n,都有 ln n .12 13 1n6已知函数
3、 f(x)e x2ln x,g(x )x 2axb( a,bR)(1)若对任意的 x(0,) ,不等式 f(x)x2m2ln x 恒成立,求实数 m 的取值范围;(2)若对任意的实数 a,函数 F(x)f(x) g(x )x 22ln x 在(0,)上总有零点,求实数b 的取值范围7已知 x1 为函数 f(x)( x2ax)ln xx 的一个极值点(1)求实数 a 的值,并讨论函数 f(x)的单调性;(2)若方程 f(x)mx 22x 有且只有一个实 数根,求实数 m 的值8.已知 f(x)a sin x,g(x )ln x,其中 aR ,yg 1 (x)是 yg (x)的反函数(1)若 00
4、,m0 恒成立,求满足条件的最小整数 b 的值1在某次水下科研考察活动中,需要潜水员潜入水深为 60 米的水底进行作业,根据以往经验,潜水员下潜的平均速度为 v(米/单位时间),每单位时间的用氧量为 31(升),(v10)在水底作业 10 个单位时间,每单位时间用氧量为 0.9(升),返回水面的平均速度为 (米/单v2位时间) ,每单位时间用氧量为 1.5(升) ,记该潜水员在此次考察活动中的总用氧量为 y(升)(1)求 y 关于 v 的函数关系式;(2)若 cv15(c0),求当下潜速度 v 取什么值时,总用氧量最少(2)y ,6v50 240v2 3v3 2 00025v2令 y0,得 v
5、10 ,32当 010 时,y0 ,函数单调递增,32当 00 时,f(x)g( x)(1)解 因为 f(x)1 ,ax2 x2 ax2(x0)若 a0,则 f(x)0 在定义域内恒成立,f(x)在 (,0),(0 ,)上单调递增;若 a0,则由 f(x)0,解得 x ,a a由 f(x)0),axh(x)1 (x0),ax2 1x x2 x ax2设 p(x) x2xa,则由 a0 知,方程 p(x)0 的判别式 1 4a0,设 p(x) 0 的正根为 x0,x x 0a 0,20p(1) 11 aa1,又 p(0) a1)F(x)2 0 恒成立,1x 2x 1xF (x)在 (1,)上为增
6、函数,又F(1)2020 ,来源: F(x)0,即 h(x)min0,当 x(0,)且 a0 时, f(x)g(x)3已知函数 f(x)ln x,g(x) xm(mR)(1)若 f(x)g(x)恒成立,求实数 m 的取值范围;(2)已知 x1,x 2 是函数 F(x)f (x)g(x )的两个零点,且 x10),则 F(x) 1 (x0),1x 1 xx当 x1 时,F(x)0,所以 F(x)在(1 ,)上单调递减,在(0,1) 上单调递增,F (x)在 x1 处取得最大值1 m,若 f(x)g(x)恒成立,则1 m0 ,即 m1.(2)证明 由(1)可知,若函数 F(x)f (x)g (x)
7、有两个零点,则 mF ,(1x1)由 F(x1)F( x2) 0,mln x1x 1,即证 ln mln x 1ln x10,1x2 2x x2 2x 1x2故 h(x)在 (0,1)上单调递增,h(x )0 得 x0,由 f(x)0, f(0)10,3e2f(x)有两个零点(2)证明 f (x)e x 2x ,(ax 1 a)x0 是 f(x)的极值点,f(0)a10,a1,f(x) (x1)e xx 2,故要证(x1)e xln(x1)x1 ,令 x1t,t0,即证 tet1 ln tt2( t0),设 h(x) exexln xx2( x0),即证 h(x)0(x0),h(x)ee x(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 解析 导数 热点问题
链接地址:https://www.77wenku.com/p-71121.html