2019高考数学决胜专卷(含解析)之古典概型与几何概型(跟踪知识梳理)
《2019高考数学决胜专卷(含解析)之古典概型与几何概型(跟踪知识梳理)》由会员分享,可在线阅读,更多相关《2019高考数学决胜专卷(含解析)之古典概型与几何概型(跟踪知识梳理)(17页珍藏版)》请在七七文库上搜索。
1、古典概型与几何概型跟踪知识梳理考纲解读:1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.考点梳理:1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件 )都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有 n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 ;如果某个事件 A 包括的结果有 m 个,那么事件 A 的概率 P(
2、A)1n.mn4.古典 概型的概率公式P(A) .事 件 A包 含 的 可 能 结 果 数试 验 的 所 有 可 能 结 果 数提醒:概率的一般加法公式 P(AB)P( A)P(B) P(AB) 中,易忽视只有当 AB ,即A,B 互斥时,P (AB)P (A)P(B),此时 P(AB)0.5.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。6.几何概型的特点(1)无限性:即在一次试验中,基本事件的个数是无限的。(2)等可能性:即每个基本事件发生的可能性相等。6.几何概型的计算公式设几何概型的基本事件空间可表示
3、成可度量的区域 ,事件 A 所对应的区域用 A 表示() ,则 。A()AP的 几 何 度 量的 几 何 度 量核心能力必练一、选择题1(2019 深圳一模)两名同学分 3 本不同的书,其中一人没有分到书,另一人分得 3 本书的概率为( )A. B. C. D.12 14 13 162(2019 北京朝阳区调研)将一个骰子连续掷 3 次,它落地时向上的点数依次成等差数列的概率为( )A. B. C. D.112 19 115 1183 “微信抢红包”自 2015 年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为 9 元,被随机分配为 1.49 元,1.31 元,2.19
4、 元,3.40 元,0.61 元,共 5 份,供甲、乙等 5 人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于 4 元的概率是( )A. B. C. D.4 4 张卡片上分别有数字 1,2,3,4,从这 4 张卡片中随机抽取 2 张,则取出的 2 张卡片上的数字之和为奇数的概率为( )来源:Z|xx|k.ComA B C D131223345假设小明家订了一份牛奶,送奶小哥在早上 6:00-7:00 之间随机地把牛奶送到小明家,而小明在早上 6:30-7:30 之间随机地离家上学,则小明在离开家前能收到牛奶的概率是( )A B C D 来源:185812786一只昆虫在边长分别为 的三角
5、形区域内随机爬行,则其到三角形顶点的距离小6,0于 的概率为( )2A B C D116247根据人口普查统计,育龄妇女生男女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是( )A B C D121314158某袋中有 9 个大小相同的球,其中有 5 个红球,4 个白球,现从中任意取出 1 个,则取出的球恰好是白球的概率为( )A B CD1514999从 1,2,3,4 中任取 2 个不同的数,则取出的 2 个数之差的绝对值为 2 的概率是( )A B CD13141610 某公共汽车站,每隔 15 分钟有一辆车发出,并且发出前在车站停靠 3 分钟,则某人随机到 达该站的候
6、车时间不超过 10 分钟的概率为( )A. B. C. D.15215135511在棱长为 2 的正方体 中任取一点 ,则满足 的概率为90AMB( )A. B. C. D.418612在区间 中随机取一个实数 ,则事件“ 直线 与圆 相 交”发生的概率为( )A. B. C. D.13某公司的班车分别在 , , 发车,小明在 至 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 15 分钟的概率是( )A. B. C. D.14在区间 上任取一个数 ,则函数 的值不小于 0 的概2,43x3sin26fxx率为( )A B C D811615115在平面区域 内随机取一
7、点,在所取的点满足 的概率为( )02,xy 2xyA B C D1618141216已知 是 所在平面内一点, ,现将一粒黄豆随机撒在PAC 20PBA内,则黄豆落在 内的概率是( ) A B C D141312317已知函数 ,当 时, 的概率为( ) 来源:Z&xx&k.Com()sincosfxx0,()1fxA B C D345218欧阳修在卖油翁中写到:“(翁)乃取一葫芦置于地,以钱覆 其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油 翁的技艺之高超,若铜钱直径为 2 厘米,中间有边长为 1 厘米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计) ,则油恰好落入孔中的概率是
8、( )A B C D4121219为了研究椭圆的面积公式,研究人员制定了下列的几何概型模型,如图,已知矩形的长、宽分别为 ,以矩形的中心 为中心制作的内切椭圆如图阴影部分所BCD,abO示,为保证试验的准确性,经过了十次试验,若十次试验在矩形 中共随机撒入ABC5000 颗豆子,落在阴影部分内的豆子是 3925 颗,那么,据此估计椭圆的面积 的公式为S( )A B C DSab34Sab3Sab3.2Sab二、填空题20在区间 上随机取一个数 ,则事件“ ”发生的概率 为_.3,2x142x21已知在四棱锥 中, ,底面 是正方形, ,PABCDPABCD底 面 2PAB在该四棱锥内部或表面任
9、取一点 ,则三棱锥 的体积不小于 的概率为 .OP2322 若不等式 所表示的平面区域为 ,不等式组 表示的平面区域2xyM0,26xy为 ,现随机向区域 内抛一粒豆子,则豆子落在区域 内的概率为_ NN23如图所示,正方形 内接于圆 ,且 ,ABCDOAEBCGD,则往圆 内投掷一点,该点落在四边形 内的概率为 .14AHCF FH24 是半径为 的圆周上一个定点,在圆周上等可能任取一点 ,连结 ,则弦MRNM的长度超过 的概率是 .N325用计算机随机产生一个有序二元数组 ,满足 ,记事件“(,)xy1,1xy”为 A,则 P(A)=_1yx26在集合1, 2,3 ,4中任取一个偶数 和一
10、个奇数 b 构成以原点为起点的向量a,从所得的向量中任取两个向量为邻边作平行四边形,则平行四边形的面积等),(bam于 2 的概率为_ 来源:ZXXK27从 中任取两个不同的数 ,则 能够约分的概率为 1,345,6,mnn28亲情教育越来越受到重视在公益机构的这类活动中,有一个环节要求父(母)与子(女)各自从 1,2,3 ,4,5 中随机挑选一个数以观测两人之间的默契程度若所选数据之差的绝对值等于 1,则称为 “基本默契”,若所选数据相同,则称为“非常默契”,则结果是“非常默契” 的概率为 _,结果为“基本默契” 的概率为 来源:Zxxk.Com29已知集合 ,则从 中任选一个元素 满足2,
11、|,AxyxyZA,xy的概率为_ _1xy古典概型与几何概型跟踪知识梳理考纲解读:1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.考点梳理:1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件 )都可以表示成基本事件的和.来源:Z+xx+k.Com2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有 n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是
12、 ;如果某个事件 A 包括的结果有 m 个,那么事件 A 的概率 P(A)1n.mn4.古典概型的概率公式P(A) .来源:Zxxk.Com事 件 A包 含 的 可 能 结 果 数试 验 的 所 有 可 能 结 果 数提醒:概率的一般加法公式 P(AB)P( A)P(B) P(AB) 中,易忽视只有当 AB ,即A,B 互斥时, P(AB)P( A)P( B),此时 P(AB)0.5.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。6.几何概型的特点(1)无限性:即在一次试验中,基本事件的个数是无限的。(2)等
13、可能性:即每个基本事件发生的可能性相等。6.几何概型的计算公式设几何概型的基本事 件空间可表示成可度量的区域 ,事件 A 所对应的区域用 A 表示() ,则 。A()AP的 几 何 度 量的 几 何 度 量核心能力必练来源:Zxxk.Com一、选择题1(2019 深圳一模)两名同学分 3 本不同的书,其中一人没有分到书,另一人分得 3 本书的概率为( )A. B. C. D.12 14 13 16【答案】B【解析】两名同学分 3 本不同的书,基本事件有(0,3),(1 a,2),(1 b,2),(1 c,2),(2 ,1 a),(2,1 b), (2,1 c),(3,0) ,共 8 个,其中一
14、人没有分到书,另一人分到 3 本书的基本事件有 2 个,一人没有分到书,另一人分得 3 本书的概率 p .故选 B.28 142(2019 北京朝阳区调研)将一个骰子连续掷 3 次,它落地时向上的点数依次成等差数列的概率为( )A. B. C. D.112 19 115 118【答案】A解析 一个骰 子连 续掷 3 次,落地时向上的点数可能出现的组合数为 63216( 种).落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3) ,(1,3,5),(2 ,3,4),(2,4, 6),(3 , 4,5),(4,5 ,6),共有 2612 种情况;当向上点数相同,共有 6 种情况.故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 决胜 专卷含 解析 古典 几何 跟踪 知识 梳理
链接地址:https://www.77wenku.com/p-71455.html