2018年山东省、湖北省部分重点中学高考数学二模试卷(文科)含答案解析
《2018年山东省、湖北省部分重点中学高考数学二模试卷(文科)含答案解析》由会员分享,可在线阅读,更多相关《2018年山东省、湖北省部分重点中学高考数学二模试卷(文科)含答案解析(26页珍藏版)》请在七七文库上搜索。
1、2018 年山东省、湖北省部分重点中学高考数学二模试卷(文科)一.选择题:本题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 (5 分)已知集合 ,Bx|1x2 ,则 AB( )A1,2 B1,2 C (1,2 D 1,122 (5 分)已知复数 z 满足 , ( 为 z 的共轭复数) 下列选项(选项中的i 为虚数单位)中 z( )A1+ i B1i C1+i 或 1i D1+i 或1i3 (5 分)当 5 个正整数从小到大排列时,其中位数为 4,若这 5 个数的唯一众数为 6,则这 5 个数的均值不可能为( &n
2、bsp;)A3.6 B3.8 C4 D4.24 (5 分)一给定函数 yf(x)的图象在下列四个选项中,并且对任意 a1(0,1) ,由关系式 an+1f(a n)得到的数列 an满足 an+1a n则该函数的图象可能是( )A BC D5 (5 分)按如图所示的算法框图,某同学在区间0,9上随机地取一个数作为 x 输入,则该同学能得到“OK”的概率( )第 2 页(共 26 页)A B C D6 (5 分)已知直线 与直线 互相平行且距离为 m等差数列an的公差为 d,且 a7a835,a 4+a100,令 Sn|a 1|+|a2|+|a3|+|an|,则 Sm 的值
3、为( )A36 B44 C52 D607 (5 分)函数 f(x )cos x+2|cosx|m,x0 ,2 恰有两个零点,则 m 的取值范围为( )A (0,1 B1 C0( 1,3 D0 ,38 (5 分)我国古代著名的数学家刘徽著有海岛算经 内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直从前表却行百二十三步,人目著地取望岛峰,与表末参合从后表却行百二十七步,人目著地取望岛峰,亦与表末参合问岛高及去表各几何?”(参考译文:假设测量海岛,立两根标杆,高均为 5 步,前后相距 1000 步,令前后两根标杆和岛在同一直线上,从前标杆退行 123
4、步,人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行 127 步,人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少?岛与前标杆相距多远?) (丈、步为古时计量单位,三丈5 步) 则海岛高度为( )A1055 步 B1255 步 C1550 步 D2255 步第 3 页(共 26 页)9 (5 分)一个几何体的三视图如图所示,正视图与俯视图外框为全等的长与宽分别为2,1 的长方形,侧视图为正方形则这个几何体的体积为( )A B C D210 (5 分)已知椭圆 的右顶点为 A,左、右焦点分别为F1(c,0) ,F 2(c,0) ,B (a,a) ,C
5、(a,a) ,过 A,B,C 三点的圆与直线相切,则此椭圆的离心率为( )A B C D11 (5 分)已知 D,E 分别是 ABC 边 AB,AC 的中点,M 是线段 DE 上的一动点(不包含 D,E 两点) ,且满足 ,则 的最小值为( )A B8 C D12 (5 分)定义在 R 上的奇函数 f(x) ,当 x0 时,则关于 x 的函数 F(x)f(x)a(0a1)的所有零点之和为( )A2 a1 B12 a Clog 2( 1+a) Dlog 2(1a)二.填空题:本题共 4 个题,每小题 5 分,共 20 分.13 (5 分)在三棱锥 SABC 中
6、,ABAC ,ABAC SA,SA平面 ABC,D 为 BC 中点,则异面直线 AB 与 SD 所成角的余弦值为 14 (5 分)已知双曲线 上一点 P,过点 P 作双曲线两渐近线的平行线 l1,l 2,直线 l1,l 2 分别交 x 轴于 M,N 两点,则| OM|ON| 15 (5 分)实系数一元二次方程 x2+ax2b0 有两实根,一根在区间(0,1)内,另一根在区间(1,2)内若 ,则 z 的取值范围为 第 4 页(共 26 页)16 (5 分)下面有四个命题:在等比数列a n中
7、,首项 a10 是等比数列 an为递增数列的必要条件已知 alg2,则 将 的图象向右平移 个单位,再将所得图象的横坐标不变,纵坐标缩短到原来的 ,可得到 ytanx 的图象设 0 a3,则函数 f(x ) x3ax(0x1)有最小值无最大值其中正确命题的序号为 (填入所有正确的命题序号)三.解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17-21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.(一)必考题:共 60 分.17 (12 分)ABC 的内角 A,B,C 的对边分别为 a,b,c已知 ()求角 B;
8、()ABC 的面积为 ,其外接圆半径为 ,且 ca,求 c18 (12 分)一批大学生和公务员为了响应我党提出的“精准扶贫”政策,申请报名参加新疆某贫困地区开展脱贫工作的“进村工作”活动,帮助当地农民脱贫致富该区有A,B ,C ,D 四个村,政府组织了四个扶贫小组分别进驻各村,开展“进村工作” ,签约期两年约期完后,统计出该区 A,B,C ,D 四村的贫富情况条形图如图:()若该区脱贫率为 80%,根据条形图,求出 B 村的总户数;()约期完后,政府打算从四个小组中选出两个小组颁发金星级奖与银星级奖,每个小组被选中的可能性相同求进驻 A 村的工作小组被选中的概率第 5 页(共 26 页)19
9、(12 分)如图,五边形 ABSCD 中,四边形 ABCD 为长方形,三角形 SBC 为边长为 2的正三角形,将三角形 SBC 沿 BC 折起,使得点 S 在平面 ABCD 上的射影恰好在 AD上()当 时,证明:平面 SAB平面 SCD;()当 AB1,求四棱锥 SABCD 的侧面积20 (12 分)已知过抛物线 :y 22px (0p8)的焦点 F 向圆 C:(x3) 2+y21 引切线 FT(T 为切点) ,切线 FT 的长为 ()求抛物线 C 的方程;()作圆 C:(x 3) 2+y21 的切线 l,直线 l 与抛物线 交于 A,B 两点,求|FA|FB|的最小值21 (12 分)已知
10、函数()当 a1 时,求 f(x )的单调区间及极值;()若 f(x)有两个零点,求实数 a 的取值范围(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第一题计分.选修 4-4:坐标系与参数方程22 (10 分)在直角坐标系 xOy 中,直线 l 的参数方程为 , (t 为参数,0) 以平面直角坐标系的原点为极点, x 轴的正半轴为极轴,建立极坐标系,曲线 C 的极坐标方程是 4cos()当 45时,求直线 l 的普通方程与曲线 C 的直角坐标方程;()已知点 C 的直角坐标为 C(2,0) ,直线 l 与曲线 C 交于 A,B 两点,当ABC面积最大
11、时,求直线 l 的普通方程选修 4-5:不等式选讲23设 f(x) a|x1|+|x+3|第 6 页(共 26 页)()当 a1 时,求 f(x )的最小值;()若 g(x)为奇函数,且 g(2x)g(x ) ,当 x0,1时,g(x)5x若h(x)f(x)g(x)有无数多个零点,作出 g(x)图象并根据图象写出 a 的值(不要求证明) 第 7 页(共 26 页)2018 年山东省、湖北省部分重点中学高考数学二模试卷(文科)参考答案与试题解析一.选择题:本题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 (5 分)已知集合 ,Bx|1x2
12、 ,则 AB( )A1,2 B1,2 C (1,2 D 1,12【分析】求函数的定义域得出集合 A,根据交集的定义写出集合 B【解答】解:由 ,得 Ax|x10x| x11,+ ) ,B x|1x21,2;AB1 ,2故选:B【点评】本题考查了不等式与集合的简单运算问题,是基础题2 (5 分)已知复数 z 满足 , ( 为 z 的共轭复数) 下列选项(选项中的i 为虚数单位)中 z( )A1+ i B1i C1+i 或 1i D1+i 或1i【分析】设 za+ bi(a,bR) ,则 ,根据复数 z 满足 ,可得,解出即可得出【解答】解:设 za+ bi(a,b R)
13、,则 ,复数 z 满足 , ,得 ,z1+i 或 z1i故选:C【点评】本题考查了复数的运算法则、共轭复数、模的计算公式、复数相等,考查了推理能力与计算能力,属于基础题3 (5 分)当 5 个正整数从小到大排列时,其中位数为 4,若这 5 个数的唯一众数为 6,则第 8 页(共 26 页)这 5 个数的均值不可能为( )A3.6 B3.8 C4 D4.2【分析】根据题意设出五个数,由此求出符合题意的五个数的可能取值,计算平均数即可【解答】解:设五个数从小到大为 a1,a 2,a 3,a 4,a 5,依题意得 a34,a 4a 56,a1,a 2 是 1,2,3 中两个不同的数,符合
14、题意的五个数可能有三种情形:“1,2,4,6,6” , “1,3,4,6,6” , “2,3,4,6,6” ,其平均数分别为 3.8,4,4.2,不可能的是 3.6故选:A【点评】本题考查了样本特征数的计算问题,是基础题4 (5 分)一给定函数 yf(x)的图象在下列四个选项中,并且对任意 a1(0,1) ,由关系式 an+1f(a n)得到的数列 an满足 an+1a n则该函数的图象可能是( )A BC D【分析】利用已知条件推出 f(a n)a n,判断函数的图象,推出选项即可【解答】解:一给定函数 yf (x)的图象在下列四个选项中,并且对任意 a1(0,1) ,由关系式
15、an+1f(a n)得到的数列a n满足 an+1a n得 f(a n)a n,所以 f(a 1)a 1 在a 1(0,1)上都成立,即x(0,1) ,f(x)x,所以函数图象都在 yx 的下方故选:A【点评】本题考查函数图象的判断,数列与函数的关系,是基本知识的考查5 (5 分)按如图所示的算法框图,某同学在区间0,9上随机地取一个数作为 x 输入,则该同学能得到“OK”的概率( )第 9 页(共 26 页)A B C D【分析】求出计算出 y1 的 x 的取值范围,代入几何概型概率计算公式,可得答案【解答】解:当 ,由算法可知 y2x+2 得 y1,2 ,得到“OK” ;当 ,
16、由算法可知 y2x+2 得 y(0,1) ,不能得到“OK” ;当 x1,3) ,由算法可知 y log3x 得 y0,1) ,不能得到“OK” ;当 x3,9,由算法可知 ylog 3x 得 y1,2,能得到“OK” ; 故选:C【点评】本题考查算法、分段函数的值域及几何概率的计算难度中档6 (5 分)已知直线 与直线 互相平行且距离为 m等差数列an的公差为 d,且 a7a835,a 4+a100,令 Sn|a 1|+|a2|+|a3|+|an|,则 Sm 的值为( )A36 B44 C52 D60【分析】根据平行线的距离求出 d2,以及 m10,再根据等差数列的定义求出通项公
17、式,即可求出和【解答】解:由两直线平行得 d2,由两平行直线间距离公式得第 10 页(共 26 页),a 7(a 72)35 得 a75 或 a77a 4+a102a 70,a 75,a n2n+9,S n|a 1|+|a2|+|a3|+|a10|7|+|5|+|3|+|1|+|1|+|3|+| 5|+|7|+|9|+|11|52故选:C【点评】考查两平行直线的距离及等差数列a n的前 n 项的绝对值的和,属于中档题7 (5 分)函数 f(x )cos x+2|cosx|m,x0 ,2 恰有两个零点,则 m 的取值范围为( )A (0,1 B1 C0( 1,3 D0 ,3【分析】画
18、出函数的 ycos x+2|cosx|的图象,ym 的图象,利用数形结合转化求解即可【解答】解:f(x )cos x+2|cosx|m,x0,2 的零点个数就是与 ym 的交点个数作出 ycos x+2|cosx|的图象,由图象可知 m0 或 1m3故选:C第 11 页(共 26 页)【点评】考查三角函数的图象及函数零点考查数形结合以及计算能力8 (5 分)我国古代著名的数学家刘徽著有海岛算经 内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直从前表却行百二十三步,人目著地取望岛峰,与表末参合从后表却行百二十七步,人目著地取望岛峰,亦与表末参合问岛高及去表各几何?”(参考
19、译文:假设测量海岛,立两根标杆,高均为 5 步,前后相距 1000 步,令前后两根标杆和岛在同一直线上,从前标杆退行 123 步,人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行 127 步,人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少?岛与前标杆相距多远?) (丈、步为古时计量单位,三丈5 步) 则海岛高度为( )A1055 步 B1255 步 C1550 步 D2255 步【分析】作出示意图,根据三角形相似求出海岛高度【解答】解:如图,设岛高 x 步,与前标杆相距 y 步,则根据三角形相似可得:,解得 x1255 步故选:B【点评】考查解直角三角形,利
20、用相似成比例的关系9 (5 分)一个几何体的三视图如图所示,正视图与俯视图外框为全等的长与宽分别为2,1 的长方形,侧视图为正方形则这个几何体的体积为( )第 12 页(共 26 页)A B C D2【分析】利用三视图判断几何体的形状,然后求解几何体的体积即可【解答】解:依题意几何体是长方体截去了一个三棱锥部分而成长方体的体积为 1122,三棱锥的体积为 ,所以几何体的体积为 故选:B【点评】考查立体几何三视图及体积运算判断几何体的形状是解题的关键考查空间想象力以及计算能力10 (5 分)已知椭圆 的右顶点为 A,左、右焦点分别为F1(c,0) ,F 2(c,0) ,B (a,a)
21、 ,C(a,a) ,过 A,B,C 三点的圆与直线相切,则此椭圆的离心率为( )A B C D【分析】画出图形利用射影定理转化求解离心率即可;另解:设过 A,B,C 三点的圆的圆心为 M(m,0) ,由|MA|MB |,列出方程,转化求解即可【解答】解:射影定理可得:BE 2AEED,即 ,所以 即椭圆的离心率 故选:D另解:设过 A,B,C 三点的圆的圆心为 M(m ,0) ,由|MA| MB|得:,解得: ,所以 , 第 13 页(共 26 页)故选:D【点评】考查椭圆的性质以及应用,是基本知识的考查11 (5 分)已知 D,E 分别是 ABC 边 AB,AC 的中点,M 是线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 山东省 湖北省 部分 重点中学 高考 数学 试卷 文科
链接地址:https://www.77wenku.com/p-72270.html