2019年湘教版数学选修2-1讲义+精练:3.6 直线与平面、平面与平面所成的角(含解析)
《2019年湘教版数学选修2-1讲义+精练:3.6 直线与平面、平面与平面所成的角(含解析)》由会员分享,可在线阅读,更多相关《2019年湘教版数学选修2-1讲义+精练:3.6 直线与平面、平面与平面所成的角(含解析)(17页珍藏版)》请在七七文库上搜索。
1、36 直线与平面、平面与平面所成的角读教材填要点1直线与平面所成的角(1)定义:如果直线 l 与平面 垂直,l 与平面 所成的角 为直角, .如果直线 l 与2平面 不垂直,则 l 在 内的射影是一条直线 l,将 l 与 l所成的角 定义为 l 与平面 所成的角(2)范围: .0,2(3)计算:作直线 l 的方向向量 v 和平面 的法向量 n,并且可选 v 与 n 所成的角 1,则 l 与平面 所成的角 1,sin cos_ 1 .0,2 2 |vn|v|n|2二面角(1)定义:从一条直线 l 出发的两个半平面 , 组成的图形叫作二面角,记作 l.(2)二面角的平面角过二面角 l 的棱 l 上
2、任意一点 O 作垂直于棱 l 的平面,分别与两个面 , 相交得到两条射线 OA,OB,则AOB 称为二面角 l 的平面角(3)二面角的范围二面角的平面角的度数在 0180 范围内,特别当二面角 l 是 90时称它为直二面角,此时称两个面 , 相互垂直3两个平面所成的角两个相交平面,以交线为棱可以构成四个二面角,其中最小的一个二面角称为这两个平面所成的角,取值范围是 .两个平行平面所成的角为 0.(0,2)小问题大思维1当一条直线 l 与一个平面 的夹角为 0 时,这条直线一定在平面内吗?提示:不一定,这条直线可能与平面平行2设直线 l 与平面 所成的角为 ,l 的方向向量为 a,平面 的法向量
3、为 n,如何用a 和 n 求角 ?提示:sin |cosa,n| .|an|a|n|3二面角的法向量的夹角与二面角的平面角的大小有什么关系?提示:相等或互补求直线与平面所成的角如图,在四棱锥 PABCD 中,底面为直角梯形,ADBC ,BAD 90 ,PA 底面 ABCD,且PA ADAB2BC,M,N 分别为 PC,PB 的中点求 BD 与平面 ADMN 所成的角 .自主解答 如图所示,建立空间直角坐标系,设 BC1,则 A(0,0,0),B(2,0,0) ,D(0,2,0),P(0,0,2),则 N(1,0,1), (2,2,0), (0,2,0), (1,0,1)BD AD AN 设平面
4、 ADMN 的一个法向量为 n( x,y ,z) ,则由得Error!取 x1,则 z1,n (1,0,1)cos ,n ,BD 28 2 12sin |cos ,n| .BD 12又 0 90, 30.利用向量法求直线与平面所成角的步骤为:(1)确定直线的方向向量和平面的法向量;(2)求两个向量夹角的余弦值;(3)确定向量夹角的范围;(4)确定线面角与向量夹角的关系:向量夹角为锐角时,线面角与这个夹角互余;向量夹角为钝角时,线面角等于这个夹角减去 90.1.如图,在三棱锥 PABC 中,PA平面 ABC,BAC90,D,E , F 分别是棱 AB,BC, CP 的中点,ABAC1,PA2.求
5、直线 PA 与平面 DEF 所成角的正弦值解:如图,以点 A 为原点,AB,AC,AP 所在的直线分别为 x,y,z 轴,建立空间直角坐标系 Axyz.由 ABAC1 ,PA 2,得 A(0,0,0),B(1,0,0) ,C(0,1,0),P(0,0,2),D ,E(12,0,0),F .(12,12,0) (0,12,1) (0,0,2), , .PA DE (0,12,0) DF ( 12,12,1)设平面 DEF 的法向量为 n(x,y,z)则即Error!解得Error!取 z1,则平面 DEF 的一个法向量为 n(2,0,1)设 PA 与平面 DEF 所成的角为 ,则sin |cos
6、 ,n| ,PA 55故直线 PA 与平面 DEF 所成角的正弦值为 .55求二面角如图,四棱柱 ABCDA1B1C1D1 的所有棱长都相等,ACBD O,A 1C1B 1D1 O1,四边形 ACC1A1 和四边形 BDD1B1 均为矩形(1)证明:O 1O底面 ABCD.(2)若CBA 60,求二面角 C1OB1D 的余弦值自主解答 (1)证明:因为四边形 ACC1A1 和四边形 BDD1B1 均为矩形,所以CC1AC,DD 1BD,又 CC1DD1OO1,所以 OO1AC,OO 1BD,因为 ACBDO,所以 O1O底面 ABCD.(2)因为四棱柱的所有棱长都相等,所以四边形 ABCD 为
7、菱形,ACBD.又 O1O底面 ABCD,所以 OB,OC,OO 1 两两垂直如图,以 O 为原点,OB,OC,OO 1 所在直线分别为 x,y ,z 轴,建立空间直角坐标系设棱长为 2,因为CBA 60,所以 OB ,OC1,3所以 O(0,0,0), B1( ,0,2),C 1(0,1,2),3平面 BDD1B1 的一个法向量为 n(0,1,0),设平面 OC1B1 的法向量为 m (x,y ,z) ,则由 m ,m ,所以Error!OB1 OC1 取 z ,则 x2,y2 ,3 3所以 m(2,2 , ),3 3所以 cosm,n .mn|m|n| 2319 25719由图形可知二面角
8、 C1OB1D 的大小为锐角,所以二面角 C1OB1D 的余弦值为 .25719利用法向量求二面角的步骤为:(1)确定两平面的法向量;(2)求两法向量的夹角的余弦值;(3)确定二面角的范围;(4)确定二面角与面面角的关系:二面角范围的确定要通过图形观察,法向量一般不能体现出来2(2016全国卷)如图,在以 A,B ,C,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF2FD,AFD90,且二面角 DAFE 与二面角 CBEF 都是 60.(1)证明:平面 ABEF平面 EFDC;(2)求二面角 EBCA 的余弦值解:(1)证明:由已知可得 AFDF,AFFE,所以 AF平面 EF
9、DC.又 AF平面 ABEF,故平面 ABEF平面 EFDC.(2)过 D 作 DG EF,垂足为 G.由(1)知 DG平面 ABEF.以 G 为坐标原点, 的方向为 x 轴正方向,| |为单位长,建立如图所示的空间GF GF 直角坐标系 G xyz.由(1)知DFE 为二面角 D AFE 的平面角,故DFE60 ,则 DF2,DG ,可3得 A(1,4,0),B (3,4,0),E (3,0,0) ,D(0,0, )3由已知得 ABEF ,所以 AB 平面 EFDC.又平面 ABCD平面 EFDCCD,故 ABCD,CDEF.由 BEAF,可得 BE平面 EFDC,所以CEF 为二面角 CB
10、EF 的平面角,CEF60.从而可得 C(2,0, )3所以 (1,0, ), (0,4,0) , (3,4, ), (4,0,0) EC 3 EB AC 3 AB 设 n(x,y,z)是平面 BCE 的法向量,则 即Error!所以可取 n(3,0, )3设 m 是平面 ABCD 的法向量,则同理可取 m(0, ,4)3则 cos n,m .nm|n|m| 21919由图知,二面角 EBCA 为钝角,故二面角 EBCA 的余弦值为 .21919解题高手 多解题 条条大路通罗马,换一个思路试一试已知 PA平面 ABC,ACBC,PAAC1,BC ,求二面角 APBC 的余弦值2解 法一:如图所
11、示,取 PB 的中点 D,连接 CD.PCBC ,2CDPB.作 AEPB 于 E,那么二面角 APBC 的大小就等于异面直线 DC 与 EA 所成的角 的大小PD1,PE ,PA2PB 12DEPD PE .12又 AE ,CD1,AC1,APABPB 32 ,且 , ,AC AE ED DC AE ED ED DC | |2| |2| |2| |22| | |cos(),即AC AE ED DC AE DC 1 12 1cos ,34 14 32解得 cos .33故二面角 APBC 的余弦值为 .33法二:由法一可知,向量 与 的夹角的大小就是二面角 APBC 的大小,如图,DC EA
12、建立空间直角坐标系 Cxyz,则 A(1,0,0),B(0, ,0),C(0,0,0),P (1,0,1),D 为 PB 的中点,2D .(12,22,12)又 ,即 E 分 的比为 .PEEB AP2AB2 13 PB 13E , ,(34,24,34) EA (14, 24, 34) ,| | ,| |1,DC ( 12, 22, 12) EA 32 DC .EA DC 14 ( 12) ( 24) ( 22) ( 34) ( 12) 12cos , .EA DC 33故二面角 APBC 的余弦值为 .33法三:如图所示建立空间直角坐标系,则 A(0,0,0) ,B( ,1,0) ,2C(
13、0,1,0),P (0,0,1), (0,0,1), ( ,1,0) , ( ,0,0) , AP AB 2 CB 2(0 ,1,1),CP 设平面 PAB 的法向量为 m(x,y,z),则 Error!Error!令 x1,则 m(1, ,0) 2设平面 PBC 的法向量为 n(x,y ,z) ,则Error!Error!令 y1,则 n(0 ,1,1) ,cosm,n .mn|m|n| 33二面角 APBC 的余弦值为 .331若直线 l 的方向向量与平面 的法向量的夹角等于 120,则直线 l 与平面 所成的角等于( )A120 B60C30 D以上均错解析:设直线 l 与平面 所成的角
14、为 ,则 sin |cos 120| ,12又 090,30.答案:C2若正三棱锥的侧面都是直角三角形,则侧面与底面所成的二面角的余弦值为( )A. B.63 33C. D.23 13解析:设正三棱锥 PABC,PA ,PB ,PC 两两互相垂直,设PA PBPC a.取 AB 的中点 D,连接 PD, CD,易知PDC 为侧面 PAB 与底面ABC 所成的角易求 PD a,CD a,22 62故 cosPDC .PDDC 33答案:B3在边长为 a 的正ABC 中,AD BC 于 D,沿 AD 折成二面角 BADC 后,BC a,这时二面角 BADC 的大小为( )12A30 B45C60
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年湘教版 数学 选修 讲义 精练 3.6 直线 平面 解析
链接地址:https://www.77wenku.com/p-72347.html