2018-2019学年苏教版数学选修2-1阶段质量检测(二)圆锥曲线与方程(含解析)
《2018-2019学年苏教版数学选修2-1阶段质量检测(二)圆锥曲线与方程(含解析)》由会员分享,可在线阅读,更多相关《2018-2019学年苏教版数学选修2-1阶段质量检测(二)圆锥曲线与方程(含解析)(12页珍藏版)》请在七七文库上搜索。
1、阶段质量检测( 二) 圆锥曲线与方程考试时间:120 分钟 试卷总分:160 分二题 号 一15 16 17 18 19 20总 分得 分一、填空题(本大题共 14 小题,每小题 5 分,共 70 分将答案填在题中的横线上)1(江苏高考)双曲线 1 的两条渐近线的方程为_x216 y292抛物线 y24x 的焦点到双曲线 x2 1 的渐近线的距离是_y233方程 1 表示焦点在 x 轴上的椭圆,则 a 的取值范围是x2a 12 y2a2_4(辽宁高考)已知 F 为双曲线 C: 1 的左焦点, P,Q 为 C 上的点若 PQ 的x29 y216长等于虚轴长的 2 倍,点 A(5,0)在线段 PQ
2、 上,则PQF 的周长为_5设点 P 是双曲线 1(a0,b0) 与圆 x2y 22a 2 的一个交点,F 1,F 2 分别是x2a2 y2b2双曲线的左、右焦点,且 PF13PF 2,则双曲线的离心率为_6已知动圆 P 与定圆 C:(x2) 2y 21 相外切,又与定直线 l:x1 相切,那么动圆的圆心 P 的轨迹方程是_7已知双曲 C1 1(a0,b0)的离心率为 2.若抛物线 C2:x 22py(p0)的焦x2a2 y2b2点到双曲线 C1 的渐进线的距离为 2,则抛物线 C2 的方程为 _8过抛物线 x28y 的焦点 F 作直线交抛物线于 P1(x1,y 1),P 2(x2,y 2)两
3、点,若y1y 28,则 P1P2 的值为_ 9椭圆 1 的右焦点到直线 y x 的距离是_x24 y23 3310已知椭圆 C: 1(ab0)的左焦点为 F,C 与过原点的直线相交于 A,B 两x2a2 y2b2点,连接 AF, BF.若 AB10 ,BF8,cos ABF ,则 C 的离心率为_4511(新课标全国卷改编)已知椭圆 E: 1(ab0)的右焦点为 F(3,0),过点 Fx2a2 y2b2的直线交 E 于 A,B 两点若 AB 的中点坐标为(1,1),则 E 的方程为_12抛物线 y212x 截直线 y2x1 所得弦长等于_13以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同的
4、点,顺次连结这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为_14给出如下四个命题:方程 x2y 22x 10 表示的图形是圆; 椭圆 1 的离心率 e ;抛物线 x2y 2 的准线的方程是 x ;双曲线x23 y22 53 18 1 的渐近线方程是 y x.y249 x225 57其中所有不正确命题的序号是_二、解答题(本大题共 6 小题,共 90 分解答时应写出必要的文字说明、证明过程或演算步骤)15(本小题满分 14 分)求与椭圆 1 有共同焦点,且过点 (0,2)的双曲线方程,x2144 y2169并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程16(本小题满分 1
5、4 分)已知抛物线 C:y 24x 的焦点为 F,过点 F 的直线 l 与 C 相交于 A,B 两点,若 |AB|8,求直线 l 的方程17.(本小题满分 14 分) 如图,F 1,F 2 分别是椭圆C: 1(a b0)的左、右焦点,A 是椭圆 C 的顶点, B 是直线x2a2 y2b2AF2 与椭圆 C 的另一个交点,F 1AF260.(1)求椭圆 C 的离心率;(2)已知AF 1B 的面积为 40 ,求 a,b 的值318(浙江高考)( 本小题满分 16 分)如图,点 P(0,1) 是椭圆C1: 1(a b0)的一个顶点,C 1 的长轴是圆 C2:x 2y 24 的x2a2 y2b2直径l
6、 1,l 2 是过点 P 且互相垂直的两条直线,其中 l1 交圆 C2 于A,B 两点,l 2 交椭圆 C1 于另一点 D.(1)求椭圆 C1 的方程;(2)求ABD 面积取最大值时直线 l1 的方程9(陕西高考)( 本小题满分 16 分)已知动点 M(x,y )到直线 l:x4 的距离是它到点N(1,0)的距离的 2 倍(1)求动点 M 的轨迹 C 的方程;(2)过点 P(0,3)的直线 m 与轨迹 C 交于 A,B 两点,若 A 是 PB 的中点,求直线 m 的斜率20(湖南高考)( 本小题满分 16 分)过抛物线 E:x 22py (p0)的焦点 F 作斜率分别为k1,k 2 的两条不同
7、直线 l1,l 2,且 k1k 22,l 1 与 E 相交于点 A,B,l 2 与 E 相交于点C,D,以 AB,CD 为直径的圆 M,圆 N(M,N 为圆心) 的公共弦所在直线记为 l.(1)若 k10,k 20,证明: 0,b0)的率心率为x2a2 y2b22. 2,b a.双曲线的渐近线方程为 xy0. 抛物线 C2:x 22py( p0)ca a2 b2a 3 3的焦点 到双曲线的渐近线的距离为 2.(0,p2) | 30p2|2p 8.所求的抛物线方程为 x216y.答案:x 216y8解析:由题意知 p4,由抛物线的定义得P1P2P 1FP 2F (y 1y 2)p8412.(y1
8、 p2) (y2 p2)答案:129解析:椭圆 1 的右焦点为(1,0),x24 y23右焦点到直线 x3y 0 的距离 d .333 9 12答案:1210解析:在ABF 中,AF2AB 2BF 22AB BFcosABF10 28 22108 36,则 AF6.由45AB2AF 2BF 2 可知,ABF 是直角三角形,OF 为斜边 AB 的中线,c OF 5.设椭AB2圆的另一焦点为 F1,因为点 O 平分 AB,且平分 FF1,所以四边形 AFBF1 为平行四边形,所以 BFAF 18.由椭圆的性质可知 AFAF 1142a a7,则 e .ca 57答案:5711解析:因为直线 AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 苏教版 数学 选修 阶段 质量 检测 圆锥曲线 方程 解析
链接地址:https://www.77wenku.com/p-72750.html