人教版初一(下)数学第19讲:二元一次方程组的应用(学生版)
《人教版初一(下)数学第19讲:二元一次方程组的应用(学生版)》由会员分享,可在线阅读,更多相关《人教版初一(下)数学第19讲:二元一次方程组的应用(学生版)(8页珍藏版)》请在七七文库上搜索。
1、1二元一次方程组的应用_1.掌握二元一次方程组的简单应用;2.掌握二元一次方程组应用题的解法;3.会找应用题中的等量关系.1 列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答” 五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案2.列方程解应用题的基本关系量:行程问题:_2顺水速度=静水速度 水流速度 逆水速度=静水速度
2、 水流速度工程问题:_浓度问题:溶液 浓度= 溶质银行利率问题:免税利息=本金 利率时间3.列方程组解应用题的常见题型:和差倍总分问题:较大量=较小量+ 多余量,总量=倍数 倍量产品配套问题:加工总量成比例速度问题:速度 时间= 路程航速问题:此类问题分为水中航速和风中航速两类顺流(风):航速= 静水(无风)中的速度+ 水(风)速逆流(风):航速= 静水(无风)中的速度-水(风)速工程问题:工作量= 工作效率 工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题)增长率问题:原量 (1 增长率)=增长后的量原量(1减少率) =减少后的量浓度问题:溶液 浓度= 溶质银
3、行利率问题:免税利息=本金 利率时间税后利息=本金 利率时间本金利率 时间税率利润问题:利润= 售价 进价,利润率 =(售价进价) 进价100%盈亏问题:关键从盈(过剩) 、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示几何问题:必须掌握几何图形的性质、周长、面积等计算公式年龄问题:抓住人与人的岁数是同时增长的1.数字问题3【例 1】一个两位数,比它十位上的数与个位上的数的和大 9;如果交换十位上的数与个位上的数,所得两位数比原两位数大 27,求这个两位数【解析】:设这个两位数十位上的数为 x,个位上的数为 y,则这个两位数及新两位数及其之间
4、的关系可用下表表示:【答案】解:设这个两位数十位上的数为 x,个位上的数为 y。根据题意得,解方程组得 ,10927xy 14答:所求的两位数是 14练习 1一个两位数,十位上的数字是个位上数字的 2 倍,如果把个位上的数与十位上的数对调得到的数比原数小 36,求原来的两位数.练习 2一个两位数的十位数字与个位数字的和是 7,把这个两位数加上 45 后,结果恰好成为数字对调后组成的两位数,则这个两位数是多少?2.年龄问题【例 2】兄弟二人今年分别为 15 岁和 9 岁,多少年后兄的年龄是弟的年龄的 2 倍?练习 3小刚问妈妈的年龄,妈妈笑着说:“我们两人的年龄和为 52 岁,我的年龄是你的年龄
5、的 2 倍多 7,你能用学过的知识求出我们的年龄吗?”求小刚和妈妈的年龄?练习 4.师傅对徒弟说“我像你这样大时,你才 4 岁,将来当你像我这样大时,我已经是 52 岁的人了” 问这位师傅与徒弟现在的年龄各是多少岁?3.利润问题【例 3】一件商品如果按定价打九折出售可以盈利 20%;如果打八折出售可以盈利 10 元,问此商品的定价是多少? 练习 5.(2018 年贵州黔东南州立志中学期中)某超市计划购进一批甲、乙两种玩具,已知 5 件甲种玩具的进价与 3 件乙种玩具的进价的和为 231 元,2 件甲种玩具的进价与 3 件乙种玩具的进价的和为 141 元求每件甲种、乙种玩具的进价分别是多少元?练
6、习 6.福建欣欣电子有限公司向工商银行申请了甲、乙两种贷款,共计 68 万元,每年需付出十位上的数 个位上的数 对应的两位数 相等关系原两位数 x y 10x+y 10x+y=x+y+9新两位数 y x 10y+x 10y+x=10x+y+274利息 8.42 万元甲种贷款每年的利率是 12,乙种贷款每年的利率是 13,求这两种贷款的数额各是多少?4.配套问题【例 4】某厂共有 120 名生产工人,每个工人每天可生产螺栓 25 个或螺母 20 个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?【解析】产品配套是工厂生产中基
7、本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1 ) “二合一”问题:如果件甲产品和件乙产品配成一套,那么甲产品数的倍等于乙产品数的倍,即 ab甲 产 品 数 乙 产 品 数;(2 ) “三合一”问题:如果甲产品件,乙产品件,丙产品件配成一套,那么各种产品数应满足的相等关系式是: c甲 产 品 数 乙 产 品 数 丙 产 品 数此题要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数 2=每天生产的
8、螺母数 1练习 7某种仪器由 1 种 A 部件和 1 个 B 部件配套构成每个工人每天可以加工 A 部件 1000个或者加工 B 部件 600 个,现有工人 16 名,应怎样安排人力,才能使每天生产的 A 部件和 B 部件配套?练习 8.用白铁皮做罐头盒,每张铁皮可制盒身 16 个,或盒底 43 个,一个盒身与两个盒底配成一套罐头盒。现有 150 张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒.5.行程问题【例 5】在某条高速公路上依次排列着 A、B、C 三个加油站,A 到 B 的距离为 120 千米,B 到C 的距离也是 120 千米分别在 A、C 两个加油站实施抢劫的两个犯
9、罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在 B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往 A、C 两个加油站驶去,结果往 B 站驶来的团伙在 1 小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过 3 小时后才被另一辆巡逻车追赶上问巡逻车和犯罪团伙的车的速度各是多少?练习 9.汽车从甲地到乙地,若每小时行驶 45 千米,就要延误 30 分钟到达;若每小时行驶50 千米,那就可以提前 30 分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?练习 10.轮船沿江从 A 港顺流行驶到 B 港,比从 B 港返回 A 港少用 3 小时,若船速为 26 千米/小时
10、,水速为 2 千米/时,则 A 港和 B 港相距_千米6.货运问题5【例 6】某船的载重量为 300 吨,容积为 1200 立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为 6 立方米,乙种货物每吨的体积为 2 立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?【解析】“充分利用这艘船的载重和容积”的意思是“ 货物的总重量等于船的载重量” 且“货物的体积等于船的容积” 练习 11甲桶装水 49 升,乙桶装水 56 升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的 ,求这两个水桶的容
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初一 数学 19 二元 一次 方程组 应用 学生
链接地址:https://www.77wenku.com/p-73647.html