2018年新疆乌鲁木齐市高考数学二模试卷(理科)含答案解析
《2018年新疆乌鲁木齐市高考数学二模试卷(理科)含答案解析》由会员分享,可在线阅读,更多相关《2018年新疆乌鲁木齐市高考数学二模试卷(理科)含答案解析(23页珍藏版)》请在七七文库上搜索。
1、2018 年新疆乌鲁木齐市高考数学二模试卷(理科)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 (5 分)若集合 Ax| x(x+1)0 ,By|y ,则( )AAB BAB CABR DB A2 (5 分)i 为虚数单位,则复数 ( )A B C D3 (5 分)已知 m,n 为两条不同的直线, , 为两个不同的平面,则下列命题中正确的是( )A若 ,m ,则 mB若平面 内有不共线的三点到平面 的距离相等,则 C若 m , mn,则 nD若 mn,n,则 m4 (5 分)设等差数
2、列a n的前 n 项和为 Sn,若 ,则 ( )A2 B C4 D5 (5 分)实数 x,y 满足约束条件 ,若 zxay(a0)的最大值为 4,则a( )A2 B C3 D46 (5 分)公元 263 年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术” 如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的 n 值为( ) (已知:sin150.2588,sin7.5 0.1305)第 2 页(共 23 页)A12 B20 C24 D487 (5 分)如图是某个几何体的三视图,俯视图是一个等腰直
3、角三角形和一个半圆,则这个几何体的体积是( )A B C D8 (5 分)设 f(x )2 sinx+2sinx ,则下列说法不正确的是( )Af(x)为 R 上的偶函数B 为 f(x)的一个周期C 为 f(x)的一个极小值点Df(x)在区间 上单调递减9 (5 分)已知正方形 ABCD 的边长为 2,对角线相交于点 O,P 是线段 BC 上一点,则第 3 页(共 23 页)的最小值为( )A2 B C D210 (5 分)函数 f(x )与它的导函数 f'(x)的图象如图所示,则函数 的单调递减区间为( )A (0,4) B (,1)
4、,C D (0,1) , (4,+)11 (5 分)已知点 P 是双曲线 的渐近线上的动点,过点 P 作圆(x5)2+y25 的两条切线,则两条切线夹角的最大值为( )A90 B60 C45 D3012 (5 分)已知函数 与 g(x)|x|+log 2(x+a)的图象上存在关于 y 轴对称的点,则 a 的取值范围是( )A B C D二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13 (5 分)已知函数 ,则 f(1)的值为 14 (5 分)有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相
5、邻) ,则不同的站法种数为 (用数字作答)15 (5 分)已知 F 是椭圆 C 的一个焦点,B 是短轴的一个端点,线段 BF 的延长线交椭圆C 于点 D,且 ,则椭圆 C 的离心率为 16 (5 分)把函数 f(x )sinx(x 0)所有的零点按从小到大的顺序排列,构成数列a n,第 4 页(共 23 页)数列b n满足 ,则数列b n的前 n 项和 Tn 三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17 (12 分)在ABC 中,角 A,B,C 的对边
6、分别为 a,b,c,已知 A2B(1)求证:a 2b(b+c) ;(2)若ABC 的面积为 ,求 B 的大小18 (12 分)如图,在三棱锥 ABCD 中,AB平面 BCD,BCBD,E,F,G 分别是CD,AD,AB 的中点,H 是 CE 的中点(1)求证:HG平面 BEF;(2)若 BCBD2AB ,求二面角 EBF D 的余弦值19 (12 分)近年来,我国电子商务蓬勃发展,有关部门推出了针对网购平台的商品和服务的评价系统,从该系统中随机选出 100 次成功了的交易,并对这些交易的评价进行统计,网购者对商品的满意率为 0.6,对服务的满意率为 0.75,其中对商品和服务都满意的交易为 4
7、0 次(1)根据已知条件完成下面的 22 列联表,并回答能否有 99%的把握认为“网购者对服务满意与对商品满意之间有关”?对服务满意 对服务不满意 合计对商品满意 40对商品不满意合计 100(2)若将频率视为概率,某人在该网购平台上进行的 3 次购物中,设对商品和服务都满意的次数为 X,求 X 的分布列和数学期望附: (其中 na+b+c+d 为样本容量)P(K 2k 0) 0.15 0.10 0.05 0.025 0.010第 5 页(共 23 页)k 2.072 2.706 3.841 5.024 6.63520 (12 分)如图,抛物线 y22px(p0)的准线与 x 轴交于点 M,过
8、点 M 的直线与拋物线交于 A,B 两点,设 A(x 1,y 1) (y 10)到准线的距离 dp(1)若 y1d2,求拋物线的标准方程;(2)若 ,求直线 AB 的斜率21 (12 分)已知 f(x )(ax1)e x+x2(1)若 f(x)在 xa1 处取得极值,求实数 a 的值;(2)证明:a0 时,f(x)ln (ax1)+x 2+x+1请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.选修 4-4:坐标系与参数方程22 (10 分)在平面直角坐标系 xOy 中,曲线 C 的参数方程为 以 O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线 l 的极坐标方程为
9、 (1)写出曲线 C 的普通方程及直线 l 的直角坐标方程;(2)过点 M 且平行于直线 l 的直线与曲线 C 交于 A,B 两点,若|MA| |MB|2,证明点M 在一个椭圆上选修 4-5:不等式选讲23设函数 f(x )|x a|+|2x+4|3(a2) (1)试比较 f(a)与 f(2)的大小;(2)若函数 f(x )的图象与 x 轴能围成一个三角形,求实数 a 的取值范围第 6 页(共 23 页)2018 年新疆乌鲁木齐市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 (
10、5 分)若集合 Ax| x(x+1)0 ,By|y ,则( )AAB BAB CABR DB A【分析】利用不等式的解法求出集合 A,函数的值域求解集合 B,然后判断两个集合的关系【解答】解:集合 ,可得 A x|x0 或 x1 ; By|y 0 可知:B A故选:D【点评】本题考查函数值域的求法,不等式的解法,集合的关系,是基本知识的考查2 (5 分)i 为虚数单位,则复数 ( )A B C D【分析】直接利用复数代数形式的乘法运算化简得答案【解答】解: ,故选:A【点评】本题考查了复数代数形式的乘除运算,是基础题3 (5 分)已知 m,n 为两条不同的直线, , 为
11、两个不同的平面,则下列命题中正确的是( )A若 ,m ,则 mB若平面 内有不共线的三点到平面 的距离相等,则 C若 m , mn,则 nD若 mn,n,则 m【分析】在 A 中,m 或 m;在 B 中, 与 相交或平行;在 C 中,n 或n;在 D 中,由线面垂直的判定定理得 m【解答】解:由 m,n 为两条不同的直线, , 为两个不同的平面,知:在 A 中,若 ,m ,则 m 或 m,故 A 错误;第 7 页(共 23 页)在 B 中,若平面 内有不共线的三点到平面 的距离相等,则 与 相交或平行,故B 错误;在 C 中,若 m,mn,则 n 或 n,故 C 错误;在 D 中,
12、若 mn,n,则由线面垂直的判定定理得 m,故 D 正确故选:D【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题4 (5 分)设等差数列a n的前 n 项和为 Sn,若 ,则 ( )A2 B C4 D【分析】设等差数列a n的公差为 d,根据 ,可得 a1+5d2(a 1+2d) ,化为:a1d0,代入利用求和公式即可得出【解答】解:设等差数列a n的公差为 d, , a1+5d2(a 1+2d) ,化为:a1d0,则 故选:B【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属
13、于中档题5 (5 分)实数 x,y 满足约束条件 ,若 zxay(a0)的最大值为 4,则a( )A2 B C3 D4【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,分类代入目标函数求解第 8 页(共 23 页)【解答】解:由实数 x,y 满足约朿条件 作出可行域如图,联立 ,解得 A(2,2) ,由图得 B(2,0) 化目标函数 zxay (a0)为 y 当直线 y 过 A 或 B 时,直线在 y 轴上的截距最小,z 有最大值把 A(2,2)代入 z2+2a4,得 a3,符合题意;把 B(2,0)代入 z24a3故选:C
14、【点评】本题考查简单的线性规划,考查数形结合的解题思想方法与数学转化思想方法,属中档题6 (5 分)公元 263 年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术” 如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的 n 值为( ) (已知:sin150.2588,sin7.5 0.1305)第 9 页(共 23 页)A12 B20 C24 D48【分析】列出循环过程中 S 与 n 的数值,满足判断框的条件即可结束循环【解答】解:模拟执行程序,可得:n6,S3sin60 ,不满足条件 S3.10,n12,S6sin3
15、03,不满足条件 S3.10,n24,S12sin15120.25883.1056,满足条件 S3.10,退出循环,输出 n 的值为 24故选:C【点评】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题7 (5 分)如图是某个几何体的三视图,俯视图是一个等腰直角三角形和一个半圆,则这个几何体的体积是( )第 10 页(共 23 页)A B C D【分析】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体这个几何体体积 V1 21+ ( ) 222+ 故选:A【点评】本题考查了圆柱与三棱柱
16、的三视图与体积计算公式,考查了推理能力与计算能力,属于基础题8 (5 分)设 f(x )2 sinx+2sinx ,则下列说法不正确的是( )Af(x)为 R 上的偶函数B 为 f(x)的一个周期C 为 f(x)的一个极小值点Df(x)在区间 上单调递减【分析】由已知中 f(x )e sinx+esin x(x R) ,分析函数的奇偶性,周期性,单调性,进而可得答案第 11 页(共 23 页)【解答】解:对于函数 f(x )2 sinx+2sinx ,由于满足 f(x)2 sinx +2sinxf (x ) ,故该函数为偶函数,故 A 正确;f(x+ )2 sin(x+) +2si
17、n(x+ ) 2 sinx +2sinxf (x) ,故 为 f(x)的一个周期,故B 正确;f(x)cos x(e sinxe sin x) ,当 x( ,)时,f(x)0,当 x(, )时,f(x)0,故 为 f(x)的一个极小值点,故 C 正确;x(0, )时, f(x ) 0,故 f(x)在区间( 0, )上单调递增,故 D 错误,故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,熟练掌握各种基本初等函数的图象和性质,是解答的关键,属于中档题9 (5 分)已知正方形 ABCD 的边长为 2,对角线相交于点 O,P 是线段 BC 上一点,则的最小值为( )A2 B
18、 C D2【分析】建立坐标系,设 P 点坐标,利用坐标表示出 ,从而得出结论【解答】解:以 A 为原点建立坐标系,则 O(1,1) ,B(2,0) ,C(2,2) ,设 P(2,x) ,则 (1,x1) , (0,x2) ,且 0x 2 (x1) (x 2)x 23x+2(x ) 2 ,当 x 时, 取得最小值为 故选:C【点评】本题考查了平面向量的数量积运算,属于中档题第 12 页(共 23 页)10 (5 分)函数 f(x )与它的导函数 f'(x)的图象如图所示,则函数 的单调递减区间为( )A (0,4) B (,1) ,C D (0,1) , (4,+)【分析】结
19、合函数图象求出 f(x )f(x)0 成立的 x 的范围即可【解答】解:结合图象:x(0,1)和 x(4,+)时,f (x)f(x)0,而 g(x) ,故 g(x)在(0,1) , (4,+)递减,故选:D【点评】本题考查了数形结合思想,考查函数的单调性问题,是一道基础题11 (5 分)已知点 P 是双曲线 的渐近线上的动点,过点 P 作圆(x5)2+y25 的两条切线,则两条切线夹角的最大值为( )A90 B60 C45 D30【分析】求出双曲线的渐近线方程,圆的圆心坐标,与半径,求解圆心到渐近线的距离,然后求解两条切线夹角的最大值【解答】解:双曲线 的渐近线为:y2x,圆(x5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 新疆 乌鲁木齐市 高考 数学 试卷 理科
链接地址:https://www.77wenku.com/p-74972.html